1
|
R V, Granada DL, Skariyachan S, P U, K S. In vitro and In silico investigation deciphering novel antifungal activity of endophyte Bacillus velezensis CBMB205 against Fusarium oxysporum. Sci Rep 2025; 15:684. [PMID: 39753601 PMCID: PMC11698993 DOI: 10.1038/s41598-024-77926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 01/06/2025] Open
Abstract
Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease. In the present study, the endophytic bacterium was isolated from Globba racemosa and their antagonistic activities against Foc were studied, and the probable molecular mechanism of antagonism was predicted by molecular docking studies. The 16SrRNA sequencing confirmed the endophytic isolate to be Bacillus velezensis CBMB205 (EG2). The antagonistic activities of the isolates by distortion of fungal hyphae were illustrated in SEM. The probable metabolites present in endophytic isolate were identified by FTIR, suggesting the presence of C-H, CH3 and O-H groups. Two major metabolites such as β-amyrin and dihydroxy octadecenoic acid (DA) were confirmed by LC-MS analysis. Molecular docking studies suggested that these metabolites showed potential binding with chitin synthase 1 and fungal 1,3-glucan synthase of pathogenic fungi. The binding energy (BE) of the molecular interaction between β-amyrin and chitin synthase-1 (CS-1), and 1,3-glucan synthase (1,3-GS) were estimated to be -10.17 kcal/mol and - 9.5 kcal/mol, respectively. The BE of the interaction between β-amyrin and CS-1 and 1,3-GS were determined to be -2.43 kcal/mol and 3.4 kcal/mol, respectively. The current study demonstrated the antagonistic activities of EG2 towards Foc and provided a probable molecular mechanism by in silico studies. The study also provides a potential insight into developing endophytic metabolite-based antifungal agents for various agricultural applications.
Collapse
Affiliation(s)
- Vibha R
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India
| | - Daniela Loaiza Granada
- Department of Agricultural Science, Jaime Isaza Cadavid Colombian Polytechnic, Medellin, Colombia
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India
| | - Ujwal P
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
| | - Sandesh K
- Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
| |
Collapse
|
2
|
Douka D, Spantidos TN, Tsalgatidou PC, Katinakis P, Venieraki A. Whole-Genome Profiling of Endophytic Strain B.L.Ns.14 from Nigella sativa Reveals Potential for Agricultural Bioenhancement. Microorganisms 2024; 12:2604. [PMID: 39770806 PMCID: PMC11678546 DOI: 10.3390/microorganisms12122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and tolerance to abiotic stress. The strain also exhibited antifungal activity against phytopathogens such as Rhizoctonia solani, Colletotrichum acutatum, Verticillium dahliae, and Fusarium oxysporum f. sp. radicis-lycopersici. Whole-genome analysis, supported by ANI and dDDH values, identified B.L.Ns.14 as Bacillus halotolerans. Genome mining revealed 128 active carbohydrate enzymes (Cazymes) related to endophytism and biocontrol functions, along with genes involved in phosphate solubilization, siderophore and IAA production, biofilm formation, and motility. Furthermore, genes for osmolyte metabolism, Na+/H+ antiporters, and stress response proteins were also identified. The genome harbors 12 secondary metabolite biosynthetic gene clusters, including those for surfactin, plipastatin mojavensin, rhizocticin A, and bacilysin, known for their antagonistic effects against fungi. Additionally, B.L.Ns.14 promoted Arabidopsis thaliana growth under both normal and saline conditions, and enhanced Solanum lycopersicum growth via seed biopriming and root irrigation. These findings suggest that Bacillus halotolerans B.L.Ns.14 holds potential as a biocontrol and plant productivity agent, warranting further field testing.
Collapse
Affiliation(s)
- Dimitra Douka
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Tasos-Nektarios Spantidos
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | | | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Nazir A, Puthuveettil AR, Hussain FHN, Hamed KE, Munawar N. Endophytic fungi: nature's solution for antimicrobial resistance and sustainable agriculture. Front Microbiol 2024; 15:1461504. [PMID: 39726956 PMCID: PMC11669676 DOI: 10.3389/fmicb.2024.1461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes. The present study investigates the potential of endophytic fungi as a source of novel bioactive chemicals with antibacterial capabilities. These fungi synthesize secondary metabolites such as polyketides and peptides via polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways. Notable substances, like prenylated indole alkaloids and fumaric acid, have shown promising antibacterial and antifungal properties against multidrug-resistant infectious agents. This review also emphasizes the symbiotic link between endophytes and their host plants, which is critical for secondary metabolite production. The study focuses on the significance of isolation methods for endophytes and proposes their use in for sustainable agriculture, bioremediation, and medicine. Future research combining endophytic biodiversity analysis with next-generation sequencing (NGS) and nanotechnology could provide novel techniques for combating AMR and contributing to sustainability across multiple industries.
Collapse
Affiliation(s)
- Asiya Nazir
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Abdul R. Puthuveettil
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | - Khalid E. Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Nayla Munawar
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Khalkho JP, Beck A, Priyanka, Panda B, Chandra R. Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids. Arch Microbiol 2024; 206:340. [PMID: 38960981 DOI: 10.1007/s00203-024-04067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
Collapse
Affiliation(s)
- Jaya Prabha Khalkho
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Beck
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyanka
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Banishree Panda
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ramesh Chandra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
6
|
Núñez-García IC, Martínez-Ávila GCG, González-Herrera SM, Tafolla-Arellano JC, Rutiaga-Quiñones OM. Bioprospecting of endophytic fungi from semidesert candelilla (Euphorbia antisyphilitica Zucc): Potential for extracellular enzyme production. J Basic Microbiol 2024; 64:e2400049. [PMID: 38715338 DOI: 10.1002/jobm.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 07/04/2024]
Abstract
Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.
Collapse
Affiliation(s)
- Itzel C Núñez-García
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | | | - Silvia M González-Herrera
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | - Julio C Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular. Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico
| | - O Miriam Rutiaga-Quiñones
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| |
Collapse
|
7
|
Ebadi M, Ahmadi F, Tahmouresi H, Pazhang M, Mollaei S. Investigation the biological activities and the metabolite profiles of endophytic fungi isolated from Gundelia tournefortii L. Sci Rep 2024; 14:6810. [PMID: 38528041 DOI: 10.1038/s41598-024-57222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Endophytic fungi are microorganisms that are considered as a potential source of natural compounds, and can be applied in various industries. The aims of this research were molecular identification of endophytic fungi isolated from the Gundelia tournefortii stems, and investigation their biological activities as well as phenolic and fatty acid profile. Surface sterilized stems of G. tournefortii were placed on potato dextrose agar (PDA) to isolate the fungal endophytes. Genomic DNA was extracted by CTAB method, and PCR amplification was performed by ITS 1 and ITS 4 as primers. The enzyme production of endophytic fungi was determined based on the formation of a clear zone that appeared around the colonies of fungus. The anti-oxidant activity was evaluated by measuring the amount of free radicals DPPH. Also, the total phenol and flavonoid contents were measured obtained by Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. Moreover, the separation and identification of phenolic acids and fatty acids were done by HPLC and GC, respectively. Phylogenetic analysis was done based on the Internal Transcribed Spacer (ITS) region, and five isolates were identified as following: Aspergillus niger, Penicillium glabrum, Alternaria alternata, A. tenuissima, and Mucor circinelloides. Evaluation of the enzymatic properties showed that P. gabrum (31 ± 1.9 mm), and A. niger (23 ± 1.7) had more ability for producing pectinase and cellulase. The anti-oxidant activity of isolates showed that A. alternata extract (IC50 = 471 ± 29 µg/mL) had the highest anti-oxidant properties, followed by A. tenuissima extract (IC50 = 512 ± 19 µg/mL). Also, the extract of A. alternata had the greatest amount of total phenols and flavonoids contents (8.2 ± 0.4 mg GAL/g and 2.3 ± 0.3 mg QE/g, respectively). The quantification analysis of phenolic acid showed that rosmarinic acid, para-coumaric acid, and meta-coumaric acid (42.02 ± 1.31, 7.53 ± 0.19, 5.41 ± 0.21 mg/g, respectively) were the main phenolic acids in the studied fungi. The analysis of fatty acids confirmed that, in all fungi, the main fatty acids were stearic acid (27.9-35.2%), oleic acid (11.3-17.3%), palmitic acid (16.9-23.2%), linoleic acid (5.8-11.6%), and caprylic acid (6.3-10.9%). Our finding showed that endophytic fungi are a source of bioactive compounds, which could be used in various industries. This is the first report of endophytic fungi associated with G. tournefortii, which provides knowledge on their future use on biotechnological processes.
Collapse
Affiliation(s)
- Mostafa Ebadi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Fatemeh Ahmadi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Tahmouresi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Saeed Mollaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
8
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Correction: Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2024; 23:1. [PMID: 38167086 PMCID: PMC10763461 DOI: 10.1186/s12934-023-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|