1
|
Richter P, Panchalingam J, Miebach K, Schipper K, Feldbrügge M, Mann M. Studying microbial triglyceride production from corn stover saccharides unveils insights into the galactose metabolism of Ustilago maydis. Microb Cell Fact 2024; 23:204. [PMID: 39033104 PMCID: PMC11264902 DOI: 10.1186/s12934-024-02483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
The global demand for plant oil has reached unprecedented levels and is relevant in all industrial sectors. Driven by the growing awareness for environmental issues of traditional plant oils and the need for eco-friendly alternatives, microbial oil emerges as a promising product with significant potential. Harnessing the capabilities of oleaginous microorganisms is an innovative approach for achieving sustainable oil production. To increase economic feasibility, it is crucial to explore feedstocks such as agricultural waste streams as renewable resource for microbial bioprocesses. The fungal model Ustilago maydis is one promising organism in the field of microbial triglyceride production. It has the ability to metabolize a wide variety of carbon sources for cell growth and accumulates high amounts of triglycerides intracellularly. In this study we asked whether this large variety of usable carbon sources can also be utilized for triglyceride production, using corn stover saccharides as a showcase.Our experiments revealed metabolization of the major saccharide building blocks present in corn stover, demonstrating the remarkable potential of U. maydis. The microorganism exhibited the capacity to synthesize triglycerides using the saccharides glucose, fructose, sucrose, xylose, arabinose, and galactose as carbon source. Notably, while galactose has been formerly considered as toxic to U. maydis, we found that the fungus can metabolize this saccharide, albeit with an extended lag phase of around 100 hours. We identified two distinct methods to significantly reduce or even prevent this lag phase, challenging previous assumptions and expanding the understanding of U. maydis metabolism.Our findings suggest that the two tested methods can prevent long lag phases on feedstocks with high galactose content and that U. maydis can produce microbial triglycerides very efficiently on many different carbon sources. Looking forward, exploring the metabolic capabilities of U. maydis on additional polymeric components of corn stover and beyond holds promise for innovative applications, marking a significant step toward environmentally sustainable bioprocessing technologies.
Collapse
Affiliation(s)
- Paul Richter
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Jathurshan Panchalingam
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Katharina Miebach
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Marcel Mann
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
2
|
Sundaram T, Govindarajan RK, Vinayagam S, Krishnan V, Nagarajan S, Gnanasekaran GR, Baek KH, Rajamani Sekar SK. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front Microbiol 2024; 15:1357302. [PMID: 38374917 PMCID: PMC10876000 DOI: 10.3389/fmicb.2024.1357302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Vasumathi Krishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Virudhunagar, India
| | - Shankar Nagarajan
- Department of Biomedical Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | | |
Collapse
|