1
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01625-x. [PMID: 39673684 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
2
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
3
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Xu J, Yu C, Zeng X, Tang W, Xu S, Tang L, Huang Y, Sun Z, Yu T. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis. Eur J Med Res 2023; 28:461. [PMID: 37885035 PMCID: PMC10605986 DOI: 10.1186/s40001-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords "breast cancer" and "protein synthesis" in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that "breast cancer," "expression," "cancer," "protein," and "translation" were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Weifeng Tang
- Fuzhou Medical College of Nanchang University, Fuzhou, 344000, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, 330029, China.
| |
Collapse
|
5
|
The NRSF/REST transcription factor in hallmarks of cancer: From molecular mechanisms to clinical relevance. Biochimie 2023; 206:116-134. [PMID: 36283507 DOI: 10.1016/j.biochi.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
The RE-1 silencing transcription factor (REST), or neuron restrictive silencing factor (NRSF), was first identified as a repressor of neuronal genes in non-neuronal tissue. Interestingly, this transcription factor may act as a tumor suppressor or an oncogenic role in developing neuroendocrine and other tumors in patients. The hallmarks of cancer include six biological processes, including proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, inducing angiogenesis, and activating invasion and metastasis. In addition to two emerging hallmarks, the reprogramming of energy metabolism and evasion of the immune response are all implicated in the development of human tumors. It is essential to know the role of these processes as they will affect the outcome of alternatives for cancer treatment. Various studies in this review demonstrate that NRSF/REST affects the different hallmarks of cancer that could position NRSF/REST as an essential target in the therapy and diagnosis of certain types of cancer.
Collapse
|
6
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
7
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
8
|
Pai P, Kumar A, Shetty MG, Kini SG, Krishna MB, Satyamoorthy K, Babitha KS. Identification of potent HDAC 2 inhibitors using E-pharmacophore modelling, structure-based virtual screening and molecular dynamic simulation. J Mol Model 2022; 28:119. [PMID: 35419753 PMCID: PMC9007783 DOI: 10.1007/s00894-022-05103-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Histone deacetylase 2 (HDAC 2) of class I HDACs plays a major role in embryonic and neural developments. However, HDAC 2 overexpression triggers cell proliferation by diverse mechanisms in cancer. Over the decades, many pan and class-specific inhibitors of HDAC were discovered. Limitations such as toxicity and differential cell localization of each isoform led researchers to hypothesize that isoform selective inhibitors may be relevant to bring about desired effects. In this study, we have employed the PHASE module to develop an e-pharmacophore model and virtually screened four focused libraries of around 300,000 compounds to identify isoform selective HDAC 2 inhibitors. The compounds with phase fitness score greater than or equal to 2.4 were subjected to structure-based virtual screening with HDAC 2. Ten molecules with docking score greater than -12 kcal/mol were chosen for selectivity study, QikProp module (ADME prediction) and dG/bind energy identification. Compound 1A with the best dock score of -13.3 kcal/mol and compound 1I with highest free binding energy, -70.93 kcal/mol, were selected for molecular dynamic simulation studies (40 ns simulation). The results indicated that compound 1I may be a potent and selective HDAC 2 inhibitor. Further, in vitro and in vivo studies are necessary to validate the potency of selected lead molecule and its derivatives.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Bhat Krishna
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kampa Sundara Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Hmaidi R, Ksouri A, Benabderrazek R, Antonietti V, Sonnet P, Gautier M, Bouhaouala-Zahar B, Ouadid-Ahidouch H. The Pharmacological and Structural Basis of the AahII–NaV1.5 Interaction and Modulation by the Anti-AahII Nb10 Nanobody. Front Pharmacol 2022; 13:821181. [PMID: 35295326 PMCID: PMC8918821 DOI: 10.3389/fphar.2022.821181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Scorpion α-toxins are neurotoxins that target the fast inactivation mechanism of voltage-gated sodium (NaV) channels leading to several neuro- and cardiotoxic effects in mammals. The toxin AahII is the most active α-toxin from the North African scorpion Androctonus australis Hector that slows the fast inactivation of NaV channels. To fight scorpion envenomation, an anti-AahII nanobody named NbAahII10 (Nb10) was developed. The efficiency of this nanobody has been evaluated in vivo on mice, but its mechanism of action at the cellular level remains unknown. Here we have shown that AahII toxin slows the fast inactivation of the adult cardiac NaV1.5 channels, expressed in HEK293 cells, in a dose-dependent manner, while current amplitude was not affected. The inactivation of NaV1.5 is slower by a factor of 4, 7, and 35 in the presence of [AahII] at 75, 150, and 300 nM, respectively. The washout partially reversed the toxin effect on inactivation from 8.3 ± 0.9 ms to 5.2 ± 1.2 ms at 75 nM. We have also demonstrated that the highly neutralizing Nb10 can fully reverse the effect of AahII toxin on the channel inactivation kinetics even at the 1:1 M ratio. However, the 1:0.5 M ratio is not able to neutralize completely the AahII effect. Therefore, the application of Nb10 promotes a partial abolishment of AahII action. Bioinformatic analysis and prediction of NaV1.5-driven docking with AahII show that Ala39 and Arg62 of AahII play a crucial role to establish a stable interaction through H-bound interactions with Gln1615 and Lys1616 (S3–S4 extracellular loop) and Asp1553 (S1–S2 loop) from the voltage-sensing domain IV (VSD4) of NaV1.5, respectively. From this, we notice that AahII shares the same contact surface with Nb10. This strongly suggests that Nb10 dynamically replaces AahII toxin from its binding site on the NaV1.5 channel. At the physiopathological level, Nb10 completely neutralized the enhancement of breast cancer cell invasion induced by AahII. In summary, for the first time, we made an electrophysiological and structural characterization of the neutralization potent of Nb10 against the α-scorpion toxin AahII in a cellular model overexpressing NaV1.5 channels.
Collapse
Affiliation(s)
- Riadh Hmaidi
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Ayoub Ksouri
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Benabderrazek
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Viviane Antonietti
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Mathieu Gautier
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| |
Collapse
|
10
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
11
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
12
|
Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis 2021; 12:779. [PMID: 34365463 PMCID: PMC8349356 DOI: 10.1038/s41419-021-04047-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
The PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.
Collapse
Affiliation(s)
- Pengfei Xu
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China
| | - Wei Xiong
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Yun Lin
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
13
|
Murtadha AH, Azahar IIM, Sharudin NA, Has ATC, Mokhtar NF. Influence of nNav1.5 on MHC class I expression in breast cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
15
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
16
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front Genet 2020; 11:603552. [PMID: 33193750 PMCID: PMC7658393 DOI: 10.3389/fgene.2020.603552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis is a complex process that involved in various genetic and epigenetic alterations during the progression of breast cancer. Recent evidences have indicated that the mutation in the genome sequence may not be the key factor for increasing metastatic potential. Epigenetic changes were revealed to be important for metastatic phenotypes transition with the development in understanding the epigenetic basis of breast cancer. Herein, we aim to present the potential epigenetic drivers that induce dysregulation of genes related to breast tumor growth and metastasis, with a particular focus on histone modification including histone acetylation and methylation. The pervasive role of major histone modification enzymes in cancer metastasis such as histone acetyltransferases (HAT), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and so on are demonstrated and further discussed. In addition, we summarize the recent advances of next-generation sequencing technologies and microfluidic-based devices for enhancing the study of epigenomic landscapes of breast cancer. This feature also introduces several important biotechnologists for identifying robust epigenetic biomarkers and enabling the translation of epigenetic analyses to the clinic. In summary, a comprehensive understanding of epigenetic determinants in metastasis will offer new insights of breast cancer progression and can be achieved in the near future with the development of innovative epigenomic mapping tools.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Darvishi N, Rahimi K, Mansouri K, Fathi F, Menbari MN, Mohammadi G, Abdi M. MiR-646 prevents proliferation and progression of human breast cancer cell lines by suppressing HDAC2 expression. Mol Cell Probes 2020; 53:101649. [PMID: 32777446 DOI: 10.1016/j.mcp.2020.101649] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast cancer is a type of cancer with a high incidence and mortality rate worldwide. Change in epigenetic mechanisms enhances cancer cell progression. Histon deacetylase 2 (HDAC2) was found to act as a potential oncogene in different malignancies. For better understanding the mechanisms related to breast cancer development, we investigated the role of HDAC2 in breast cancer and the inhibitory effect of miR-646 on this oncogene. METHODS A total of thirty cancerous tissues and 30 adjacent non-cancerous specimens and also three breast cancer cell lines were enrolled in the study. Quantitative reverse transcriptase PCR (qRT-PCR) was employed to detect the HDAC2 and miR-646 expression level in the studied samples. The biological roles of HDAC2 and miR-646 were investigated through manipulating the expression level of HDAC2 or miR-646 in breast cancer cells. Finally, we evaluated whether the HDAC2 is a direct target for miR-646. RESULTS In this study, we found HDAC2 is significantly upregulated in cancerous specimens and cell lines compared to non-cancerous tissues and normal cell line. On the other hand, miR-646 expression was decreased in clinical specimens and breast cancer cells compared to non-cancerous samples. Knocking out of the HDAC2 and overexpression of miR-646 inhibited breast cancer cell growth but promoted cell death, while untreated groups showed inverse results. Furthermore, we showed that in the breast cancer cells, miR-646 regulates the progression and proliferation by suppressing HDAC2. CONCLUSION Taken together, our study identified a miR-646/HDAC2 regulatory function in the breast cancer development and introduced a therapeutically target for breast cancer.
Collapse
Affiliation(s)
- Nikoo Darvishi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Gholamabbas Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
19
|
Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L, Tao H, Rong M, Kang S, Deng M. The Functional Role of Voltage-Gated Sodium Channel Nav1.5 in Metastatic Breast Cancer. Front Pharmacol 2020; 11:1111. [PMID: 32792949 PMCID: PMC7393602 DOI: 10.3389/fphar.2020.01111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-forming α subunit of VGSC encoded by SCN5A. Various studies have demonstrated that Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review the latest available data on the pro-metastatic effect of Nav1.5 and its underlying mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Qianxuan Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Mingqiang Rong
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Shuntong Kang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
20
|
Dewadas HD, Kamarulzaman NS, Yaacob NS, Che Has AT, Mokhtar NF. The role of HIF-1α, CBP and p300 in the regulation of Nav1.5 expression in breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|