1
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
2
|
Pullarkat S, Black G, Bleakley M, Buenrostro D, Chapuis AG, Hirayama AV, Jaeger-Ruckstuhl CA, Kimble EL, Lee BM, Maloney DG, Radich J, Seaton BW, Specht JM, Turtle CJ, Woolston DW, Wright JH, Yeung CCS. qPCR assay for detection of Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Elements from CAR-T and TCR-T cells in fresh and formalin-fixed tissue. PLoS One 2024; 19:e0303057. [PMID: 38843256 PMCID: PMC11156344 DOI: 10.1371/journal.pone.0303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20μL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.
Collapse
MESH Headings
- Humans
- Formaldehyde
- Hepatitis B Virus, Woodchuck/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Fixation/methods
- Immunotherapy, Adoptive/methods
- Real-Time Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Shalini Pullarkat
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Denise Buenrostro
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Aude G. Chapuis
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Alexandre V. Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Carla A. Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Bo M. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Maloney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Jerald Radich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Brandon W. Seaton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jennifer M. Specht
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - David W. Woolston
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jocelyn H. Wright
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Saba NF, Pamulapati S, Patel B, Mody M, Strojan P, Takes R, Mäkitie AA, Cohen O, Pace-Asciak P, Vermorken JB, Bradford C, Forastiere A, Teng Y, Wieland A, Ferlito A. Novel Immunotherapeutic Approaches to Treating HPV-Related Head and Neck Cancer. Cancers (Basel) 2023; 15:1959. [PMID: 37046621 PMCID: PMC10092986 DOI: 10.3390/cancers15071959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Head and neck cancer (HNC) is the seventh most common malignancy, with oropharyngeal squamous cell carcinoma (OPSCC) accounting for a majority of cases in the western world. While HNC accounts for only 5% of all cancers in the United States, the incidence of a subset of OPSCC caused by human papillomavirus (HPV) is increasing rapidly. The treatment for OPSCC is multifaceted, with a recently emerging focus on immunotherapeutic approaches. With the increased incidence of HPV-related OPSCC and the approval of immunotherapy in the management of recurrent and metastatic HNC, there has been rising interest in exploring the role of immunotherapy in the treatment of HPV-related OPSCC specifically. The immune microenvironment in HPV-related disease is distinct from that in HPV-negative OPSCC, which has prompted further research into various immunotherapeutics. This review focuses on HPV-related OPSCC, its immune characteristics, and current challenges and future opportunities for immunotherapeutic applications in this virus-driven cancer.
Collapse
Affiliation(s)
- Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Bhamini Patel
- Department of Internal Medicine, Emory University, Atlanta, GA 30307, USA
| | - Mayur Mody
- Hematology and Oncology Program, AdventHealth Medical Group, Calhoun, GA 30701, USA
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia
| | - Robert Takes
- Department of Otolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Research Program in Systems Oncology, FI-00014 Helsinki, Finland
| | - Oded Cohen
- Department of Otolaryngology, Ben Gurion University of the Negev, Soroka Medical Center, Be’er Sheva 84-101, Israel
| | - Pia Pace-Asciak
- Department of Otolarynology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jan B. Vermorken
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Carol Bradford
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43212, USA
| | - Arlene Forastiere
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43212, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy
| |
Collapse
|
4
|
Transgenic HA-1-Specific CD8 + T-Lymphocytes Selectively Target Leukemic Cells. Cancers (Basel) 2023; 15:cancers15051592. [PMID: 36900382 PMCID: PMC10000933 DOI: 10.3390/cancers15051592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
Collapse
|
5
|
Identification of TCR rearrangements specific for genetic alterations in EGFR-mutated non-small cell lung cancer: results from the ADJUVANT-CTONG1104 trial. Cancer Immunol Immunother 2022; 72:1261-1272. [PMID: 36427086 DOI: 10.1007/s00262-022-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Tumor response T cells, which have specific T cell receptor (TCR) rearrangements in tumor-infiltrating lymphocytes, determine their ability to interact with the mutation-derived neoantigens presented by antigen-presenting cells. Little is known about the genetic alterations related to specific TCR clones in non-small cell lung cancer (NSCLC) patients who have an epidermal growth factor receptor (EGFR) mutation. In this study, tumor tissues were collected from 101 patients with stage II/III resectable NSCLC with an EGFR mutation (57 patients were treated with gefitinib and 44 were treated with chemotherapy) in the ADJUVANT-CTONG1104 trial for high-throughput TCRβ V region and exome sequencing. Ten clonal TCRs were associated with EGFR exon 19 deletion (del), EGFR exon 21 mutation (L858R), RB1 alteration, TP53 exon 4/5 missense mutation, TP53 nonsense mutation, or copy number gains in NKX2-1 and CDK4. Among the TCRs, there was frequent use of Vβ20-1Jβ2-3 specifically for EGFR exon 19 del or Vβ9Jβ2-1 specifically for EGFR exon 21 mutation (L858R), and these were significantly associated with favorable overall survival (OS) for NSCLC patients harboring EGFR exon 19 del or exon 21 L858R, particularly in the adjuvant gefitinib setting. Moreover, in comparison with the chemotherapy-preferable (CP) group, higher frequencies of Vβ20-1Jβ2-3 and Vβ9Jβ2-1 were found in the highly TKI-preferable (HTP) or TKI-preferable (TP) groups. Altogether, we identified ten TCR rearrangements specific for genetic alterations in NSCLC. Importantly, high abundance Vβ20-1Jβ2-3 or Vβ9Jβ2-1 may be an immune biomarker for guiding adjuvant gefitinib decisions for NSCLC patients harboring EGFR exon 19 del or EGFR exon 21 L858R.
Collapse
|
6
|
Kang S, Wang L, Xu L, Wang R, Kang Q, Gao X, Yu L. Decitabine enhances targeting of AML cells by NY-ESO-1-specific TCR-T cells and promotes the maintenance of effector function and the memory phenotype. Oncogene 2022; 41:4696-4708. [PMID: 36097193 PMCID: PMC9568428 DOI: 10.1038/s41388-022-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
NY-ESO-1 is a well-known cancer-testis antigen (CTA) with re-expression in numerous cancer types, but its expression is suppressed in myeloid leukemia cells. Patients with acute myeloid leukemia (AML) receiving decitabine (DAC) exhibit induced expression of NY-ESO-1 in blasts; thus, we investigated the effects of NY-ESO-1-specific TCR-engineered T (TCR-T) cells combined with DAC against AML. NY-ESO-1-specific TCR-T cells could efficiently eliminate AML cell lines (including U937, HL60, and Kasumi-1cells) and primary AML blasts in vitro by targeting the DAC-induced NY-ESO-1 expression. Moreover, the incubation of T cells with DAC during TCR transduction (designated as dTCR-T cells) could further enhance the anti-leukemia efficacy of TCR-T cells and increase the generation of memory-like phenotype. The combination of DAC with NY-ESO-1-specific dTCR-T cells showed a superior anti-tumor efficacy in vivo and prolonged the survival of an AML xenograft mouse model, with three out of five mice showing complete elimination of AML cells over 90 days. This outcome was correlated with enhanced expressions of IFN-γ and TNF-α, and an increased proportion of central memory T cells (CD45RO+CD62L+ and CD45RO+CCR7+). Taken together, these data provide preclinical evidence for the combined use of DAC and NY-ESO-1-specific dTCR-T cells for the treatment of AML.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Lixin Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China. .,Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
7
|
Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11:38. [PMID: 35725570 PMCID: PMC9210724 DOI: 10.1186/s40164-022-00291-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
T cell immunotherapy remains an attractive approach for cancer immunotherapy. T cell immunotherapy mainly employs chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells. CAR-T cell therapy has been an essential breakthrough in treating hematological malignancies. TCR-T cells can recognize antigens expressed both on cell surfaces and in intracellular compartments. Although TCR-T cells have not been approved for clinical application, a number of clinical trials have been performed, particularly for solid tumors. In this article, we summarized current TCR-T cell advances and their potential advantages for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China
| | - Zhipeng Liu
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China. .,Guangdong Cord blood bank, Guangzhou, 510663, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Chen C, Liu SYM, Chen Y, Ou Q, Bao H, Xu L, Zhang Y, Zhong W, Zhou Q, Yang XN, Shao Y, Wu YL, Liu SY, Li Y. Predictive value of TCR Vβ-Jβ profile for adjuvant gefitinib in EGFR mutant NSCLC from ADJUVANT-CTONG 1104 trial. JCI Insight 2022; 7:e152631. [PMID: 35014626 PMCID: PMC8765044 DOI: 10.1172/jci.insight.152631] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Herein, we characterize the landscape and prognostic significance of the T cell receptor (TCR) repertoire of early-stage non-small cell lung cancer (NSCLC) for patients with an epidermal growth factor receptor (EGFR) mutation. β Chain TCR sequencing was used to characterize the TCR repertoires of paraffin-preserved pretreatment tumor and tumor-adjacent tissues from 57 and 44 patients with stage II/III NSCLC with an EGFR mutation treated with gefitinib or chemotherapy in the ADJUVANT-CTONG 1104 trial. The TCR diversity was significantly decreased in patients with an EGFR mutation, and patients with high TCR diversity had a favorable overall survival (OS). A total of 10 TCR Vβ-Jβ rearrangements were significantly associated with OS. Patients with a higher frequency of Vβ5-6Jβ2-1, Vβ20-1Jβ2-1, Vβ24-1Jβ2-1, and Vβ29-1Jβ2-7 had significantly longer OS. Weighted combinations of the 4 TCRs were significantly associated with OS and disease-free survival (DFS) of patients, which could further stratify the high and low TCR diversity groups. Importantly, Vβ5-6Jβ2-1, Vβ20-1Jβ2-1, and Vβ24-1Jβ2-1 had a significant relationship with gefitinib treatment, while Vβ29-1Jβ2-7 was associated with chemotherapy. Four TCR Vβ-Jβ rearrangements related to favorable OS and DFS for adjuvant gefitinib and chemotherapy in patients with an EGFR mutation with stage II/III NSCLC; this may provide a novel perspective for the adjuvant setting for resectable NSCLC.
Collapse
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Si-Yang Maggie Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
- Department of Hematology, First Affiliated Hospital, Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
| | - Yedan Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| |
Collapse
|
9
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
10
|
García-Ríos E, Nuévalos M, Mancebo FJ, Pérez-Romero P. Is It Feasible to Use CMV-Specific T-Cell Adoptive Transfer as Treatment Against Infection in SOT Recipients? Front Immunol 2021; 12:657144. [PMID: 33968058 PMCID: PMC8104120 DOI: 10.3389/fimmu.2021.657144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, many studies have demonstrated the role of CMV specific T-cell immune response on controlling CMV replication and dissemination. In fact, it is well established that transplanted patients lacking CMV-specific T-cell immunity have an increased occurrence of CMV replication episodes and CMV-related complications. In this context, the use of adoptive transfer of CMV-specific T-cells has been widely investigated and applied to Hematopoietic Stem Cell Transplant patients and may be useful as a therapeutic alternative, to reconstitute the CMV specific T-cell response and to control CMV viremia in patients receiving a transplantation. However, only few authors have explored the use of T-cell adoptive transfer in SOT recipients. We propose a novel review in which we provide an overview of the impact of using CMV-specific T-cell adoptive transfer on the control of CMV infection in SOT recipients, the different approaches to stimulate, isolate and expand CMV-specific T-cells developed over the years and a discussion of the possible use of CMV adoptive cellular therapy in this SOT population. Given the timeliness and importance of this topic, we believe that such an analysis will provide important insights into CMV infection and its treatment/prevention.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
11
|
Age-Related Immune Profile of the T Cell Receptor Repertoire, Thymic Recent Output Function, and miRNAs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5910823. [PMID: 33344643 PMCID: PMC7732372 DOI: 10.1155/2020/5910823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022]
Abstract
Background T cell immunity plays a central role in the body's defense system, including maintaining homeostasis and preventing tumorigenesis and viral infection. Immune system functions degenerate with age, leading to immune senescence. Physiologically, immune senescence is characterized by a decrease in T cell receptor diversity, naive T cell deficiency, and alterations in T cell immune-related miRNAs. However, little is known about the characteristics of T cell immunosenescence in Chinese individuals. Results A significant decrease in the miR-17, miR-92a, and miR-181a levels in PBMCs was detected with age. The miR-92a and miR-181a levels were upregulated in CBMCs when comparing healthy individuals to group I (0~9 years), whereas miR-17 was downregulated. The sjTREC level in PBMCs was negatively correlated with age, and a sharp decrease in sjTRECs was found between groups I and II (10~19 years). Twenty-four TCR Vβ subfamilies could be detected in most samples, and most displayed polyclonality, while skewed expression of the Vβ subfamilies as well as an increased oligoclonal tendency was found with age. Similarly, the frequencies of the TCR Vγ and Vδ subfamilies decreased with age, and the alteration in clonality appeared to be stable at different ages. Conclusion We made the novel observation of T cell immunosenescence with age in Chinese individuals, which may provide information for immune targets to enhance the T cell immune response in immunotherapy settings for elderly patients.
Collapse
|
12
|
Dragon AC, Zimmermann K, Nerreter T, Sandfort D, Lahrberg J, Klöß S, Kloth C, Mangare C, Bonifacius A, Tischer-Zimmermann S, Blasczyk R, Maecker-Kolhoff B, Uchanska-Ziegler B, Abken H, Schambach A, Hudecek M, Eiz-Vesper B. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. J Immunother Cancer 2020; 8:jitc-2020-000736. [PMID: 33127653 PMCID: PMC7604878 DOI: 10.1136/jitc-2020-000736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Immunosuppressive therapy or T-cell depletion in transplant patients can cause uncontrolled growth of Epstein-Barr virus (EBV)-infected B cells resulting in post-transplant lymphoproliferative disease (PTLD). Current treatment options do not distinguish between healthy and malignant B cells and are thereby often limited by severe side effects in the already immunocompromised patients. To specifically target EBV-infected B cells, we developed a novel peptide-selective chimeric antigen receptor (CAR) based on the monoclonal antibody TÜ165 which recognizes an Epstein-Barr nuclear antigen (EBNA)−3C-derived peptide in HLA-B*35 context in a T-cell receptor (TCR)-like manner. In order to attract additional immune cells to proximity of PTLD cells, based on the TÜ165 CAR, we moreover generated T cells redirected for universal cytokine-mediated killing (TRUCKs), which induce interleukin (IL)-12 release on target contact. Methods TÜ165-based CAR-T cells (CAR-Ts) and TRUCKs with inducible IL-12 expression in an all-in-one construct were generated. Functionality of the engineered cells was assessed in co-cultures with EBNA-3C-peptide-loaded, HLA-B*35-expressing K562 cells and EBV-infected B cells as PTLD model. IL-12, secreted by TRUCKs on target contact, was further tested for its chemoattractive and activating potential towards monocytes and natural killer (NK) cells. Results After co-cultivation with EBV target cells, TÜ165 CAR-Ts and TRUCKs showed an increased activation marker expression (CD137, CD25) and release of proinflammatory cytokines (interferon-γ and tumor necrosis factor-α). Moreover, TÜ165 CAR-Ts and TRUCKs released apoptosis-inducing mediators (granzyme B and perforin) and were capable to specifically lyse EBV-positive target cells. Live cell imaging revealed a specific attraction of TÜ165 CAR-Ts around EBNA-3C-peptide-loaded target cells. Of note, TÜ165 TRUCKs with inducible IL-12 showed highly improved effector functions and additionally led to recruitment of monocyte and NK cell lines. Conclusions Our results demonstrate that TÜ165 CAR-Ts recognize EBV peptide/HLA complexes in a TCR-like manner and thereby allow for recognizing an intracellular EBV target. TÜ165 TRUCKs equipped with inducible IL-12 expression responded even more effectively and released IL-12 recruited additional immune cells which are generally missing in proximity of lymphoproliferation in immunocompromised PTLD patients. This suggests a new and promising strategy to specifically target EBV-infected cells while sparing and mobilizing healthy immune cells and thereby enable control of EBV-associated lymphoproliferation.
Collapse
Affiliation(s)
- Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Katharina Zimmermann
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Thomas Nerreter
- Department of Internal Medicine II, Universitätsklinikum Würzburg, Wuerzburg, Bayern, Germany
| | - Deborah Sandfort
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Julia Lahrberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Stephan Klöß
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Niedersachsen, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Sachsen, Germany
| | - Christina Kloth
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Caroline Mangare
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | | | - Hinrich Abken
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, Universitätsklinikum Regensburg, Regensburg, Bayern, Germany
| | - Axel Schambach
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael Hudecek
- Department of Internal Medicine II, Universitätsklinikum Würzburg, Wuerzburg, Bayern, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| |
Collapse
|
13
|
Kang M, Hong J, Jung M, Kwon SP, Song SY, Kim HY, Lee JR, Kang S, Han J, Koo JH, Ryu JH, Lim S, Sohn HS, Choi JM, Doh J, Kim BS. T-Cell-Mimicking Nanoparticles for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003368. [PMID: 32812291 DOI: 10.1002/adma.202003368] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-β1 (TGF-β1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-β1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.
Collapse
Affiliation(s)
- Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokyung Kang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Han
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Jin Z, Lan T, Zhao Y, Du J, Chen J, Lai J, Xu L, Chen S, Zhong X, Wu X, Li Y. Higher TIGIT +CD226 - γδ T cells in Patients with Acute Myeloid Leukemia. Immunol Invest 2020; 51:40-50. [PMID: 32819181 DOI: 10.1080/08820139.2020.1806868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diverse structural and functional heterogeneity of γδ T cells is related to their distinct role in cancer immunity. The different phenotypes of γδ T cells in patients with acute myeloid leukemia (AML) is far from clear. In particular, the expression pattern of co-inhibitory and co-stimulatory receptors on γδ T cells remains unknown. In this study, we analyzed the distribution of γδ T cell subsets by expression of the immune checkpoint co-inhibitor TIGIT (T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) and its competing co-stimulatory receptor CD226 in AML patients of different clinical statuses (including de novo AML, AML in non-remission (NR), and AML in complete remission (CR)). Our data demonstrated an imbalanced distribution of TIGIT and CD226 on γδ T cells with a decrease in CD226+ γδ T cells and an increase in TIGIT+ γδ T cells in de novo AML patients, while TIGIT-CD226+ γδ T cells were restored in AML patients who achieved CR after chemotherapy. Moreover, the patients who had higher TIGIT+CD226- γδ T cells showed lower overall survival rate for non-M3 AML, which may be considered a novel prognostic immune biomarker. In conclusion, our study reveals for the first time that imbalance in the TIGIT/CD226 axis might be related to different clinical outcomes for AML patients. ABBREVIATIONS AML: acute myeloid leukemia; CR: complete remission; ICs: immune checkpoints; PD-1: programmed death-1; γδ T cells: gamma delta T cells; TCR: T cell receptor; MHC: major histocompatibility complex; TIGIT: T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain; NK: natural killer; PB: Peripheral blood; NR: non-remission; FAB: French-American-British; WHO: World Health Organization; HIs: healthy individuals; OS: overall survival.
Collapse
Affiliation(s)
- Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Tianbi Lan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yun Zhao
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jinxia Du
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xueyun Zhong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Increased PD-1+Tim-3+ exhausted T cells in bone marrow may influence the clinical outcome of patients with AML. Biomark Res 2020; 8:6. [PMID: 32082573 PMCID: PMC7020501 DOI: 10.1186/s40364-020-0185-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Altered expression of T cell immune inhibitory receptors may result in immunosuppression and associate with the poor prognosis of leukemia patients in which the leukemic bone marrow (BM) microenvironment may contribute to such immunosuppression. We found higher numbers of programmed death-1 (PD-1) + exhausted T cells in peripheral blood (PB) from acute myeloid leukemia (AML) patients. To investigate the leukemic BM influence on immunosuppression, we further compared the distributions of PD-1 and T cell immunoglobulin mucin-3 (Tim-3) and the exhausted T cell phenotype in PB and BM from AML patients and characterized their relationship with clinical outcome. Methods PB and BM samples from 15 patients with newly diagnosed AML were collected and analyzed for the expression of PD-1, Tim-3, CD244, and CD57 on CD3+, CD4+, and CD8+ T cells by multicolor flow cytometry. Results The proportions of PD-1 + CD3+ and PD-1 + CD8+ T cells were significantly higher in BM compared with PB. Similarly, higher PD-1 + CD244 + CD3+ and PD-1 + CD244 + CD8+ T cells were found in BM, and an increased tendency for PD-1 + CD244 + CD4+ T cells was also detected in this group. In contrast, increased Tim-3 + CD4+/Tim-3 + CD244 + CD4+ T cells were predominant in BM compared with PB, but there was no statistically significant difference in Tim-3 + CD8+ T cells. Moreover, PD-1 and Tim-3 double-positive CD3+/CD4+/CD8+ T cells were significantly increased in the BM group. In addition, a higher proportion of PD-1 + Tim-3 + CD3+ T cells in the BM and PD-1 + Tim-3 + CD4+ T cells in PB was detected in non-complete remission (NCR) compared with complete remission (CR) patients after first-cycle chemotherapy. Conclusions Upregulation of PD-1 and Tim-3 and the exhausted phenotype of CD4+ and CD8+ T cells in the BM of AML patients may contribute to mediating the leukemic immunosuppressive microenvironment, and increased PD-1 + Tim-3+ CD8+ T cells may be related to T cell dysfunction in AML, which may influence clinical outcome.
Collapse
|
16
|
Abstract
Tumor-associated antigens (TAA) or cancer biomarkers are major targets for cancer therapies. Antibody- based agents targeting the cancer biomarkers include monoclonal antibodies (MoAbs), radiolabeled MoAbs, bispecific T cell engagers, and antibody-drug conjugates. Antibodies targeting CD19, CD20, CD22, CD30, CD33, CD38, CD79B and SLAMF7 are in clinical applications for hematological malignancies. CD123, CLL-1, B cell maturation antigen, and CD138 are targets for cancer immunotherapeutic agents, including the chimeric antigen receptor - engineered T cells. Immune checkpoint inhibitors (ICIs) against PD-1, PD-L1, and CTLA-4 have led to the revolution of cancer immunotherapy. More ICIs targeting IDO, LAG3, TIM-3, TIGIT, SIGLECs, VISTA and CD47 are being explored. Small molecule inhibitors (SMIs) against tyrosine kinase oncoproteins such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, EGFR, ALK, HER2, VEGFR, FGFR, MEK, and MET have fundamentally changed the landscape of cancer therapy. SMIs against BCL-2, IDHs, BRAF, PI3 kinase, mTOR, PARP, and CDKs have become the mainstay in the treatment of a variety of cancer types. To reduce and avoid off-tumor toxicities, cancer-specific TAAs such as CD33 are being manufactured through systems biology approach. Search for novel biomarkers and new designs as well as delivery methods of targeted agents are fueling the next wave of advances in cancer therapy.
Collapse
Affiliation(s)
- Delong Liu
- New York Medical College, Valhalla, NY 10595 USA
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
17
|
Zhang Y, Xu L, Chen S, Zha X, Wei W, Li Y. Identification of TCR Vβ11-2- Dβ1- Jβ1-1 T cell clone specific for WT1 peptides using high-throughput TCRβ gene sequencing. Biomark Res 2019; 7:12. [PMID: 31223481 PMCID: PMC6570921 DOI: 10.1186/s40364-019-0163-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
We previously identified a TCR Vβ21 T cell clone which was specific to CML patients, and demonstrated that TCR Vα13/β21 gene-modified CD3+ T cells had specific cytotoxicity for HLA-A11+ K562 cells. However, it remains unclear which antigen is specifically recognized by the TCR Vβ21 T cell clone. In this study, CD3+ T cells from healthy donor peripheral blood were stimulated with the WT1 peptide or mixed BCR-ABL peptides in the presence or absence of IL-2 and IL-7. The distribution of the TCR Vβ repertoire was analyzed after different stimulations. We found that the mixed BCR-ABL peptides induced clonally expanded Vβ7-9-Dβ2-Jβ2-7 T cells while the Wilms Tumor 1 peptide induced clonally expanded Vβ11-2-Dβ1-Jβ1-1 T cells by high-throughput TCRβ sequencing and GeneScan. Interestingly, the sequence and CDR3 motif of Vβ11-2 T cell clone are similar to the TCR Vβ21 (a different TCR V region naming system) T cell clone that we previously found in CML patients. Thus, our findings suggest that the TCR Vβ21 T cell clone found in CML patients might be a T cell clone that specifically recognizes WT1.
Collapse
Affiliation(s)
- Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, People’s Republic of China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, People’s Republic of China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, People’s Republic of China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663 China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, 510632 Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Huang J, Tan J, Chen Y, Huang S, Xu L, Zhang Y, Lu Y, Yu Z, Chen S, Li Y. A skewed distribution and increased PD-1+Vβ+CD4+/CD8+ T cells in patients with acute myeloid leukemia. J Leukoc Biol 2019; 106:725-732. [PMID: 31136687 DOI: 10.1002/jlb.ma0119-021r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/14/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022] Open
Abstract
The limited application of immunotherapy in acute myeloid leukemia (AML) may be due to poor understanding of the global T cell immune dysfunction in AML. In this study, we analyzed the distribution characteristics of 24 TCR Vβ subfamilies in CD3+, CD4+, and CD8+ T cells in AML patients and healthy controls. The percentage of TCR Vβ subfamily T cells was predominately lower in most AML cases, while it was increased in some cases. TCR Vβ2+T cells were increased in AML, particularly TCR Vβ2+CD4+T cells, which were significantly higher. To further address the immunosuppression in different Vβ subfamilies, we characterized the distribution of program death-1 (PD-1)+T cells in TCR Vβ subfamilies of CD4+ and CD8+T cells. Significantly higher levels of PD-1+Vβ+T cells were found for most Vβ subfamilies in most AML cases. A higher percentage of PD-1+Vβ2+T cells with a high number of Vβ2+T cells was found in all of the CD3+, CD4+, and CD8+ T cell subsets. Moreover, increasing PD-1+Vβ7.2, Vβ8+, Vβ14+, Vβ16+, and Vβ22+CD8+T cells were distributed in the AML-M5 subtype group compared with the AML-M3 group. In addition, higher PD-1+ Vβ5.2+ and PD-1+ Vβ12+CD8+T cells were associated with AML patients who had a poor response to chemotherapy. In conclusion, increased PD-1+Vβ+T cells is a common characteristic of AML, higher PD-1+Vβ2+T cells may be associated with a low antileukemia effect, and higher PD-1+Vβ5.2+ and PD-1+Vβ12+CD8+T cells may be related to poor prognosis in AML. These characteristics may be worth considering as immune biomarkers for clinical outcome in AML.
Collapse
Affiliation(s)
- Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Shuxin Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Luo X, Xu L, Wu X, Tan H, Liu L. Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. Cancer Cell Int 2019; 19:134. [PMID: 31130823 PMCID: PMC6525380 DOI: 10.1186/s12935-019-0850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin-remodeling protein that regulates gene expressions in different types of cancer. Up-regulation of SATB1 is linked with progression of tumors. Our previous study showed that SATB1 expression was decreased in T cell leukemia/lymphoma. The contrary roles of SATB1 in solid organ tumors and hematology malignancy may provide hints to study the function of SATB1. Methods To characterize SATB1 mRNA and protein expression in acute myeloid leukemia (AML), we performed qRT-PCR and Western blot on bone marrow mononuclear cells from 52 newly diagnosed AML patients. Stable HL-60 cell lines with knockdown of SATB1 by shRNAs sequences (HL-60 SATB1-shRNA1 and HL-60 SATB1-shRNA2) were established. Cell proliferation, cell cycle and cell invasiveness were analyzed. Murine model was established using HL-60 SATB1-shRNAs treated nude mice and tumorigenicity was compared to study the role of SATB1 in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown to investigate the mechanisms underlying the regulation of AML cell growth by SATB1. Results We found that SATB1 expression was significantly decreased in patients with AML compared to normal control, and was increased after complete remission of AML. Knockdown of SATB1 enhanced the proliferation of HL-60 cells and accelerated S phase entry in vitro, and promoted the tumor growth in vivo. Global gene expression profiles were analyzed in HL-60 cells with SATB1 knockdown and the differentially expressed genes were involved in NF-κB, MAPK and PI3 K/Akt signaling pathways. Nuclear NF-κB p65 levels were significantly increased in SATB1 depleted HL-60 cells. Conclusions Decreased SATB1 expression promotes AML cell proliferation through NF-κB activation. SATB1 could be a predictor for better response to treatment in AML.
Collapse
Affiliation(s)
- Xiaodan Luo
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lihua Xu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Xiaohong Wu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Huo Tan
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| | - Lian Liu
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230 China
| |
Collapse
|