1
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
2
|
Ma J, Wen X, Xu Z, Xia P, Jin Y, Lin J, Qian J. Abnormal regulation of miR-29b-ID1 signaling is involved in the process of decitabine resistance in leukemia cells. Cell Cycle 2023; 22:1215-1231. [PMID: 37032592 PMCID: PMC10193880 DOI: 10.1080/15384101.2023.2200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Decitabine (DAC) is an inhibitor of DNA methyltransferase used to treat leukemia, but primary or secondary resistance to DAC may develop during therapy. The mechanisms related to DAC resistance remain poorly understood. In this study, we find that miR-29b expression was decreased in various leukemia cell lines and AML patients and was associated with poor prognosis. In DAC-sensitive cells, miR-29b inhibited cell growth, promoted apoptosis, and increased the sensitivity to DAC. Similarly, it exerted anti-leukemic effects in DAC-resistant cells. When the miR-29b promoter in DAC-resistant cells was demethylated, its expression was not up-regulated. Furthermore, the expression of ID1, one of the target genes of miR-29b, was down-regulated in miR-29b transfected leukemic cells. ID1 promoted cell growth, inhibited cell apoptosis, and decreased DAC sensitivity in leukemic cells in vitro and in vivo. ID1 was down-regulated in DAC-sensitive cells treated with DAC, while it was up-regulated in DAC-resistant cells. Interestingly, the ID1 promoter region was completely unmethylated in both DAC-resistant cells and sensitive cells before DAC treatment. The growth inhibition, increased DAC sensitivity, and apoptosis induced by miR-29b can be eliminated by increasing ID1 expression. These results suggested that DAC regulates ID1 expression by acting on miR-29b. Abnormal ID1 expression of ID1 that is methylation independent and induced by miR-29b may be involved in the process of leukemia cells acquiring DAC resistance.
Collapse
Affiliation(s)
- Jichun Ma
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiangmei Wen
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zijun Xu
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peihui Xia
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
4
|
DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor-resistant lung cancer therapy. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1236-1249. [PMID: 35999456 PMCID: PMC9440127 DOI: 10.1038/s12276-022-00836-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.
Collapse
|
5
|
Marengo B, Pulliero A, Corrias MV, Leardi R, Farinini E, Fronza G, Menichini P, Monti P, Monteleone L, Valenti GE, Speciale A, Perri P, Madia F, Izzotti A, Domenicotti C. Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. J Pers Med 2021; 11:jpm11020107. [PMID: 33562297 PMCID: PMC7916079 DOI: 10.3390/jpm11020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) accounts for about 8–10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- Correspondence: ; Tel.: +39-010-3538831
| | | | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Riccardo Leardi
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Emanuele Farinini
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Gilberto Fronza
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Menichini
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Monti
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Lorenzo Monteleone
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Andrea Speciale
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16100 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| |
Collapse
|
6
|
Gurnari C, Pagliuca S, Visconte V. Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21228505. [PMID: 33198085 PMCID: PMC7697160 DOI: 10.3390/ijms21228505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40-60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies' (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence: ; Tel.: +1-216-445-6895
| |
Collapse
|
7
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:ijms21197065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| |
Collapse
|