1
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03422-y. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Ma H, Zhang C, Cheng F, An H. Plasma MiR-190 is a potential clinical biomarker for acute respiratory distress syndrome in children and its regulatory role in ARDS cell models by targeting KLF15. Pediatr Neonatol 2024:S1875-9572(24)00129-3. [PMID: 39127594 DOI: 10.1016/j.pedneo.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The present research aimed to investigate the clinical value of plasma miR-190 in children with acute respiratory distress syndrome (ARDS) and the impact of miR-190 on LPS-induced ARDS cell models. METHODS The plasma miR-190 levels were measured using real-time quantitative reverse transcription PCR (RT-qPCR). LPS-treated human pulmonary microvascular endothelial cells (HPMECs) were established and then transfected with miR-190 mimic, inhibitor, or miR-negative controls. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The effects of miR-190 on HPMEC proliferation and apoptosis were evaluated by CCK-8 assay and flow cytometry. The regulation of KLF15 by miR-190 was detected by luciferase report assay. RESULTS The plasma miR-190 expression was increased in ARDS children and it was positively related to the severity and 28 day-survival. Plasma miR-190 could distinguish ARDS children from healthy children. Inhibition of miR-190 increased LPS-induced HPMEC cell proliferation and decreased cell apoptosis and inflammatory cytokines IL-6, IL-1β, and TNF-α. KLF15 was a direct target of miR-190. CONCLUSION Increased plasma miR-190 may be a clinical diagnostic and prognostic predictor for ARDS children. Inhibition of miR-190 may improve LPS-induced ARDS by increasing cell proliferation, inhibiting cell apoptosis and inflammatory response by targeting KLF15.
Collapse
Affiliation(s)
- Hongfen Ma
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Cuicui Zhang
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Fang Cheng
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Hong An
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China.
| |
Collapse
|
3
|
Cai X, Wang X, Huang Y, Rao X. Molecular mechanism of wedelolactone inhibits high glucose-induced human retinal vascular endothelial cells injury through regulating miR-190 expression. Medicine (Baltimore) 2024; 103:e37388. [PMID: 38788037 PMCID: PMC11124660 DOI: 10.1097/md.0000000000037388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the effects and molecular mechanisms of wedelolactone (WEL) on high glucose-induced injury of human retinal vascular endothelial cells (HRECs). The cell injury model was established by incubating HRECs with 30 mmol/L glucose for 24 hour. HRECs were divided into control (Con) group, high glucose (HG) group, HG + WEL-low dose (L) group, HG + WEL-medium dose (M), HG + WEL-high dose (H) group, HG + miR-NC group, HG + miR-190 group, HG + WEL + antimiR-NC group, HG + WEL + antimiR-190 group. The kit detects cellular reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content; cell apoptosis was analyzed by flow cytometry; miR-190 expression was detected by real-time quantitative PCR (RT-qPCR). Compared with Con group, the levels of ROS and MDA in the HG group were significantly increased (P < .01), the SOD activity and the expression of miR-190 expression were significantly decreased (P < .05), and the apoptosis rate was significantly increased (P < .01). Compared with HG group, the levels of ROS and MDA in HG + WEL-L group, HG + WEL-M group and HG + WEL-H group were significantly decreased (P < .05), SOD activity and miR-190 expression were significantly increased (P < .05), and apoptosis rate was significantly reduced (P < .05). Compared with the HG + miR-NC group, the levels of ROS and MDA in HG + miR-190 group were significantly reduced (P < .01), SOD activity was significantly increased (P < .01), and apoptosis rate was significantly reduced (P < .05). Compared with the HG + WEL + antimiR-NC group, the ROS level and MDA content in the HG + WEL + antimiR-190 group were significantly increased (P < .05), SOD activity was significantly decreased (P < .05), and apoptosis rate was significantly increased (P < .05). Wedelolactone can attenuate high glucose-induced HRECs apoptosis and oxidative stress by up-regulating miR-190 expression.
Collapse
Affiliation(s)
- Xiaojie Cai
- Department of Nursing, People’s Hospital of Chengyang District, Qingdao City, Shandong Province, China
| | - Xiao Wang
- Department of Ultrasound, People’s Hospital of Chengyang District, Qingdao City, Shandong Province, China
| | - Yuping Huang
- Center of Health Management, People’s Hospital of Chengyang District, Qingdao City, Shandong Province, China
| | - Xiaopang Rao
- Department of Ultrasound, People’s Hospital of Chengyang District, Qingdao City, Shandong Province, China
| |
Collapse
|
4
|
Huang Y, Wu Z, Peng Z, Liu A, Yuan W, Han D, Peng J. Hsa_circ_0004872 alleviates meningioma progression by sponging miR-190a-3p/PTEN signaling. BMC Cancer 2024; 24:345. [PMID: 38500077 PMCID: PMC10949562 DOI: 10.1186/s12885-024-12084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Yongkai Huang
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Zhihui Wu
- Surgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Zewei Peng
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Anmin Liu
- Emergency Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Wen Yuan
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Deqing Han
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Junmin Peng
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China.
| |
Collapse
|
5
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
6
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Southekal S, Shakyawar SK, Bajpai P, Elkholy A, Manne U, Mishra NK, Guda C. Molecular Subtyping and Survival Analysis of Osteosarcoma Reveals Prognostic Biomarkers and Key Canonical Pathways. Cancers (Basel) 2023; 15:2134. [PMID: 37046795 PMCID: PMC10093233 DOI: 10.3390/cancers15072134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Osteosarcoma (OS) is a common bone malignancy in children and adolescents. Although histological subtyping followed by improved OS treatment regimens have helped achieve favorable outcomes, a lack of understanding of the molecular subtypes remains a challenge to characterize its genetic heterogeneity and subsequently to identify diagnostic and prognostic biomarkers for developing effective treatments. In the present study, global analysis of DNA methylation, and mRNA and miRNA gene expression in OS patient samples were correlated with their clinical characteristics. The mucin family of genes, MUC6, MUC12, and MUC4, were found to be highly mutated in the OS patients. Results revealed the enrichment of molecular pathways including Wnt signaling, Calcium signaling, and PI3K-Akt signaling in the OS tumors. Survival analyses showed that the expression levels of several genes such as RAMP1, CRIP1, CORT, CHST13, and DDX60L, miRNAs and lncRNAs were associated with survival of OS patients. Molecular subtyping using Cluster-Of-Clusters Analysis (COCA) for mRNA, lncRNA, and miRNA expression; DNA methylation; and mutation data from the TARGET dataset revealed two distinct molecular subtypes, each with a distinctive gene expression profile. Between the two subtypes, three upregulated genes, POP4, HEY1, CERKL, and seven downregulated genes, CEACAM1, ABLIM1, LTBP2, ISLR, LRRC32, PTPRF, and GPX3, associated with OS metastasis were found to be differentially regulated. Thus, the molecular subtyping results provide a strong basis for classification of OS patients that could be used to develop better prognostic treatment strategies.
Collapse
Affiliation(s)
- Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Nitish Kumar Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Fan X, Qiu L, Huang L, Zhu W, Zhang Y, Miao Y. MiR-190a regulates milk protein biosynthesis through the mTOR and JAK2–STAT5 signaling pathways by targeting PTHLH in buffalo mammary epithelial cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
9
|
Bielak C, Arya A, Savill S. Circulating microRNA as potential diagnostic and prognostic biomarkers of well-differentiated thyroid cancer: A review article. Cancer Biomark 2023; 36:193-205. [PMID: 36776042 DOI: 10.3233/cbm-210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Half of all people aged 50 and over develop a thyroid nodule in their lifetime, exclusion of cancer is required in each case. Nodule tissue sampling is performed by way of fine needle aspiration biopsy (FNAB), however a definite diagnosis in possible only in 30% of cases. The discovery of a diagnostic biomarker to discriminate between thyroid cancer and benign nodules would therefore greatly improve current clinical practice. Using the databases of Medline, Embase and Pubmed we identified 21 original research papers examining various microRNA as potential biomarkers. Currently, the most evidence supporting diagnostic utility exists for miRNA-222. It has been shown repeatedly to have potential in diagnosis of PTC & MTC as well as being linked with the most prognostic factors of all microRNA. To a lesser extent, evidence seems to support the diagnostic and prognostic utility of miR-146b, Let-7 family, miR-221 for PTC and miR-21 for PTC & FTC. MicroRNA appear to show promise as potential diagnostic and prognostic biomarkers, however there is still not enough data to produce a consensus. Continued research should be undertaken with streamlined protocols.
Collapse
Affiliation(s)
- Cezary Bielak
- Department of Otolaryngology, Glan Clwyd Hospital, Bodelwyddan, Denbighshire, UK
| | - Arvind Arya
- Department of Otolaryngology, Glan Clwyd Hospital, Bodelwyddan, Denbighshire, UK
| | - Stuart Savill
- Maelor Academic Unit of Medical and Surgical Sciences, Wrexham, UK
| |
Collapse
|
10
|
Zhu S, Li Z, Zheng D, Yu Y, Xiang J, Ma X, Xu D, Qiu J, Yang Z, Wang Z, Li J, Sun H, Chen W, Meng X, Lu Y, Ren Q. A cancer cell membrane coated, doxorubicin and microRNA co-encapsulated nanoplatform for colorectal cancer theranostics. Mol Ther Oncolytics 2022; 28:182-196. [PMID: 36820302 PMCID: PMC9937835 DOI: 10.1016/j.omto.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Endogenous microRNAs (miRNA) in tumors are currently under exhaustive investigation as potential therapeutic agents for cancer treatment. Nevertheless, RNase degradation, inefficient and untargeted delivery, limited biological effect, and currently unclear side effects remain unsettled issues that frustrate clinical application. To address this, a versatile targeted delivery system for multiple therapeutic and diagnostic agents should be adapted for miRNA. In this study, we developed membrane-coated PLGA-b-PEG DC-chol nanoparticles (m-PPDCNPs) co-encapsulating doxorubicin (Dox) and miRNA-190-Cy7. Such a system showed low biotoxicity, high loading efficiency, and superior targeting ability. Systematic delivery of m-PPDCNPs in mouse models showed exceptionally specific tumor accumulation. Sustained release of miR-190 inhibited tumor angiogenesis, tumor growth, and migration by regulating a large group of angiogenic effectors. Moreover, m-PPDCNPs also enhanced the sensitivity of Dox by suppressing TGF-β signal in colorectal cancer cell lines and mouse models. Together, our results demonstrate a stimulating and promising m-PPDCNPs nanoplatform for colorectal cancer theranostics.
Collapse
Affiliation(s)
- Sihao Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyuan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Xiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr.7, 80336 Munich, Germany
| | - Dongqing Xu
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiajun Qiu
- Department of Otolaryngology Head and Neck Surgery, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyu Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, Gansu Province, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China,Corresponding author.
| | - Yanye Lu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| |
Collapse
|
11
|
Sadovska L, Zayakin P, Eglītis K, Endzeliņš E, Radoviča-Spalviņa I, Avotiņa E, Auders J, Keiša L, Liepniece-Karele I, Leja M, Eglītis J, Linē A. Comprehensive characterization of RNA cargo of extracellular vesicles in breast cancer patients undergoing neoadjuvant chemotherapy. Front Oncol 2022; 12:1005812. [PMID: 36387168 PMCID: PMC9644097 DOI: 10.3389/fonc.2022.1005812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
Extracellular vesicles (EVs) are g7aining increased attention as carriers of cancer-derived molecules for liquid biopsies. Here, we studied the dynamics of EV levels in the plasma of breast cancer (BC) patients undergoing neoadjuvant chemotherapy (NAC) and explored the relevance of their RNA cargo for the prediction of patients' response to the therapy. EVs were isolated from serial blood samples collected at the time of diagnosis, at the end of NAC, and 7 days, 6, and 12 months after the surgery from 32 patients with locally advanced BC, and 30 cancer-free healthy controls (HCs) and quantified by nanoparticle tracking analysis. The pre-treatment levels of EVs in BC patients were higher than in HCs, significantly increased during the NAC and surgery, and decreased to the levels found in HCs 6 months after surgery, thus showing that a substantial fraction of plasma EVs in BC patients are produced due to the disease processes and treatment. RNA sequencing analysis revealed that the changes in the EV levels were associated with the alterations in the proportions of various RNA biotypes in EVs. To search for RNA biomarkers that predict response to the NAC, patients were dichotomized as responders and non-responders based on Miller-Payne grades and differential expression analyses were carried out between responders and non-responders, and HCs. This resulted in the identification of 6 miRNAs, 4 lncRNAs, and 1 snoRNA that had significantly higher levels in EVs from non-responders than responders at the time of diagnosis and throughout the NAC, and significantly lower levels in HCs, thus representing biomarkers for the prediction of response to NAC at the time of diagnosis. In addition, we found 14 RNAs representing piRNA, miRNA, lncRNA, snoRNA, and snRNA biotypes that were induced by NAC in non-responders and 2 snoRNAs and 1 piRNA that were induced by NAC in patients with early disease progression, thus warranting further functional studies on their role in chemoresistance and metastasis.
Collapse
Affiliation(s)
- Lilite Sadovska
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Pawel Zayakin
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kristaps Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
| | - Edgars Endzeliņš
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Elīza Avotiņa
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Jānis Auders
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Keiša
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inta Liepniece-Karele
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Jānis Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
- University of Latvia, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
12
|
Lee SK, Jung SH, Song SJ, Lee IG, Choi JY, Zadeh H, Lee DW, Pi SH, You HK. miRNA-Based Early Healing Mechanism of Extraction Sockets: miR-190a-5p, a Potential Enhancer of Bone Healing. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7194640. [PMID: 36317115 PMCID: PMC9617701 DOI: 10.1155/2022/7194640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 09/07/2024]
Abstract
Objective Tooth extraction causes a wound with hard and soft tissue defects in the alveolar ridge. Few studies have reported the function of microRNAs (miRNAs) in the healing of extraction sockets. This study used bioinformatics analysis to reveal the possible relevance and role of miRNAs during the early stages following tooth extraction. Materials and Methods Socket tissues from beagle dogs (Canis familiaris; two males and two females) were collected 1 and 12 hours after extraction of premolars on both sides of the mandible. miRNA expression was profiled through miRNA sequencing, and hub miRNAs showing characteristic expression patterns were selected and subjected to target enrichment analysis. Alkaline phosphatase (ALP) activity analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to verify the effect of hub miRNA on osteoblast differentiation and bone regeneration in vivo. Results Five miRNAs were identified to have consistently high expression levels, with cfa-miR-451 showing the highest expression. Additionally, 20 hub miRNAs were selected as candidates expected to play an important role in the healing process. Pathways, such as the MAPK, axon guidance, TGF-β, and Wnt signaling, were significantly enriched. Among hub miRNAs, miR-190a-5p increased ALP activity and mRNA expression of osteogenic markers and increased new bone formation in vivo. Conclusions Our findings suggest that miRNAs may be involved in the earliest stages of socket healing after tooth extraction and can play an important role in moderating the entire socket healing mechanism in the extraction socket.
Collapse
Affiliation(s)
- Shin-Kyu Lee
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Clinical Lab for Innovative Periodontology, Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Su-Hyeon Jung
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Clinical Lab for Innovative Periodontology, Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Sang-Jin Song
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - In-Gyu Lee
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Jae-Yoon Choi
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Clinical Lab for Innovative Periodontology, Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Homayoun Zadeh
- VISTA Institute for Therapeutic Innovations, Woodland Hills, CA, USA
| | - Dong-Woon Lee
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Sung-Hee Pi
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Hyung-Keun You
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Clinical Lab for Innovative Periodontology, Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
13
|
Lu H, Yang J, Li J, Yuan H. MiR-190 ameliorates glucotoxicity-induced dysfunction and apoptosis of pancreatic β-cells by inhibiting NOX2-mediated reactive oxygen species production. PeerJ 2022; 10:e13849. [PMID: 35971429 PMCID: PMC9375543 DOI: 10.7717/peerj.13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023] Open
Abstract
Glucotoxicity-induced pancreatic β-cell failure contributes to the development of type 2 diabetes mellitus (T2DM). Accumulating evidence reveals that miRNAs play a critical role in regulating pancreatic β-cell function and survival. In this study, we employed a self-assembled cell microarray (SAMcell)-based functional screening assay to identify miRNAs that are capable of regulating the dysfunction of β-cells induced by glucotoxicity. Among 62 conserved miRNAs we tested, miR-190 was identified as a candidate regulator that could effectively restore insulin expression in NIT-1 cells under high-glucose (HG) stimulation. Further analyses demonstrated that miR-190 was significantly down-regulated in HG-treated NIT-1 cells, as well as in the pancreas of diabetic mice. Mechanistic studies showed that Cybb is the direct target gene of miR-190, which encodes the gp91phox protein, a subunit of the NOX2 complex. Furthermore, both miR-190 overexpression and Cybb knockdown inhibited apoptosis and improved glucose-stimulated insulin secretion (GSIS) in HG-stimulated NIT-1 cells by attenuating the excessive production of reactive oxygen species (ROS). More importantly, a targeted delivery of mPEG-PCL-g-PDMAEMA nanoparticles/miR-190 complexes (PECgD NPs/miR-190) to the pancreas significantly ameliorated hyperglycemia, decreased fasting serum insulin levels, and improved glucose tolerance in diabetic mice. Taken together, our findings suggest that the miR-190/Cybb axis plays an important role in glucotoxicity-induced pancreatic β-cell failure. Restoring miR-190 expression levels may be a possible therapeutic strategy to protect β-cells in T2DM.
Collapse
Affiliation(s)
- Huinan Lu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Beijing, China,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Junyu Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| |
Collapse
|
14
|
He T, Fan Y, Wang Y, Liu M, Zhu AJ. Dissection of the microRNA Network Regulating Hedgehog Signaling in Drosophila. Front Cell Dev Biol 2022; 10:866491. [PMID: 35573695 PMCID: PMC9096565 DOI: 10.3389/fcell.2022.866491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling plays a critical role in embryogenesis and adult tissue homeostasis. Aberrant Hh signaling often leads to various forms of developmental anomalies and cancer. Since altered microRNA (miRNA) expression is associated with developmental defects and tumorigenesis, it is not surprising that several miRNAs have been found to regulate Hh signaling. However, these miRNAs are mainly identified through small-scale in vivo screening or in vitro assays. As miRNAs preferentially reduce target gene expression via the 3' untranslated region, we analyzed the effect of reduced expression of core components of the Hh signaling cascade on downstream signaling activity, and generated a transgenic Drosophila toolbox of in vivo miRNA sensors for core components of Hh signaling, including hh, patched (ptc), smoothened (smo), costal 2 (cos2), fused (fu), Suppressor of fused (Su(fu)), and cubitus interruptus (ci). With these tools in hand, we performed a genome-wide in vivo miRNA overexpression screen in the developing Drosophila wing imaginal disc. Of the twelve miRNAs identified, seven were not previously reported in the in vivo Hh regulatory network. Moreover, these miRNAs may act as general regulators of Hh signaling, as their overexpression disrupts Hh signaling-mediated cyst stem cell maintenance during spermatogenesis. To identify direct targets of these newly discovered miRNAs, we used the miRNA sensor toolbox to show that miR-10 and miR-958 directly target fu and smo, respectively, while the other five miRNAs act through yet-to-be-identified targets other than the seven core components of Hh signaling described above. Importantly, through loss-of-function analysis, we found that endogenous miR-10 and miR-958 target fu and smo, respectively, whereas deletion of the other five miRNAs leads to altered expression of Hh signaling components, suggesting that these seven newly discovered miRNAs regulate Hh signaling in vivo. Given the powerful effects of these miRNAs on Hh signaling, we believe that identifying their bona fide targets of the other five miRNAs will help reveal important new players in the Hh regulatory network.
Collapse
Affiliation(s)
- Tao He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Fan
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
15
|
Dong W, Geng S, Cui J, Gao W, Sun Y, Xu T. MicroRNA-103 and microRNA-190 negatively regulate NF-κB-mediated immune responses by targeting IL-1R1 in Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 123:94-101. [PMID: 35240295 DOI: 10.1016/j.fsi.2022.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs) regulate various physiological and pathological processes at the transcriptional level, thus called novel regulators in immune response. In this study, we used bioinformatics and functional experiments to determine the role of miR-103 and miR-190 in the regulation of IL-1R1 gene involved in the immune and inflammatory responses in miiuy croakers. First, we predicted the target genes of miR-103 and miR-190 through bioinformatics and found that IL-1R1 is a direct target gene of miR-103 and miR-190. This was further confirmed by the dual-luciferase reporter assay that the over-expression of miR-103, miR-190 mimics and the pre-miR-103, pre-miR-190 plasmids inhibit the luciferase levels of the wild-type of IL-1R1 3'UTR. miR-103 and miR-190 inhibitors increase the luciferase levels of IL-1R1-3'UTR. Additionally, we found that miR-103 and miR-190 could negatively regulate the mRNA expression of IL-1R1. Importantly, we demonstrated that miR-103 and miR-190 significantly inhibit the NF-κB signaling pathway by targeting IL-1R1 upon LPS stimulation. Collectively, these results provide strong evidence for an important regulatory mechanism of miR-103 and miR-190 targeting the IL-1R1 gene, thereby preventing excessive inflammatory immune responses from causing autoimmunity.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
16
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
17
|
Li Q, Zhang Z, Chen S, Huang Z, Wang M, Zhou M, Yu C, Wang X, Chen Y, Jiang D, Du D, Huang Y, Tu X, Chen Z, Zhao Y. miR-190a-5p Partially Represses the Abnormal Electrical Activity of SCN3B in Cardiac Arrhythmias by Downregulation of IL-2. Front Cardiovasc Med 2022; 8:795675. [PMID: 35083300 PMCID: PMC8784662 DOI: 10.3389/fcvm.2021.795675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias (CAs) are generally caused by disruption of the cardiac conduction system; interleukin-2 (IL-2) is a key player in the pathological process of CAs. This study aimed to investigate the molecular mechanism underlying the regulation of IL-2 and the sodium channel current of sodium voltage-gated channel beta subunit 3 (SCN3B) by miR-190a-5p in the progression of CAs. ELISA results suggested the concentration of peripheral blood serum IL-2 in patients with atrial fibrillation (AF) to be increased compared to that in normal controls; fluorescence in situ hybridization indicated that the expression of IL-2 in the cardiac tissues of patients with AF to be upregulated and that miR-190a-5p to be downregulated. Luciferase reporter assay, quantitative real-time-PCR, and whole-cell patch-clamp experiments confirmed the downregulation of IL-2 by miR-190a-5p and influence of the latter on the sodium current of SCN3B. Overall, miR-190a-5p suppressed the increase in SCN3B sodium current caused by endogenous IL-2, whereas miR-190a-5p inhibitor significantly reversed this effect. IL-2 was demonstrated to be directly regulated by miR-190a-5p. We, therefore, concluded that the miR-190a-5p/IL-2/SCN3B pathway could be involved in the pathogenesis of CAs and miR-190a-5p might acts as a potential protective factor in pathogenesis of CAs.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Xin Tu
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Zhishui Chen
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Yuanyuan Zhao
| |
Collapse
|
18
|
Liang F, Xu X, Tu Y. Resveratrol inhibited hepatocyte apoptosis and alleviated liver fibrosis through miR-190a-5p /HGF axis. Bioorg Med Chem 2022; 57:116593. [DOI: 10.1016/j.bmc.2021.116593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
|
19
|
miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. DISEASE MARKERS 2021; 2021:8709298. [PMID: 34868398 PMCID: PMC8639278 DOI: 10.1155/2021/8709298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Objective Myocardial ischemia-reperfusion (I/R) injury (MIRI) refers to the more serious myocardial injury after blood flow recovery, which seriously affects the prognosis of patients with ischemic cardiomyopathy. This study explored the new targets for MIRI treatment by investigating the effects of miR-190-5p and its downstream target on the structure and function of myocardial cells. Methods We injected agomir miR-190-5p into the tail vein of rats to increase the expression of miR-190-5p in rat myocardial cells and made an I/R rat model by coronary artery occlusion. We used 2,3,5-triphenyl tetrazolium chloride staining, lactate dehydrogenase (LDH) detection, echocardiography, and hematoxylin-eosin (HE) staining to determine the degree of myocardial injury in I/R rats. In addition, we detected the expression of inflammatory factors and apoptosis-related molecules in rat serum and myocardial tissue to determine the level of inflammation and apoptosis in rat myocardium. Finally, we determined the downstream target of miR-190-5p by Targetscan system and dual luciferase reporter assay. Results The expression of miR-190-5p in an I/R rat myocardium was significantly lower than that in normal rats. After treatment of I/R rats with agomir miR-190-5p, the ischemic area of rat myocardium and the concentration of LDH decreased. The results of echocardiography and HE staining also found that overexpression of miR-190-5p improved the structure and function of rat myocardium. miR-190-5p was also found to improve the viability of H9c2 cells in vitro and reduce the level of apoptosis of H9c2 cells. The results of Targetscan system and dual luciferase reporter assay found that miR-190-5p targeted to inhibit pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1). In addition, inhibition of PHLPP1 was found to improve the viability of H9c2 cells. Conclusion Therefore, miR-190-5p can reduce the inflammation and apoptosis of myocardium by targeting PHLPP1, thereby alleviating MIRI.
Collapse
|
20
|
Zhou L, Li L, Chen Y, Chen C, Zhi Z, Yan L, Wang Y, Liu B, Zhai Q. miR-190a-3p Promotes Proliferation and Migration in Glioma Cells via YOD1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3957738. [PMID: 34527075 PMCID: PMC8437639 DOI: 10.1155/2021/3957738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To investigate the function of miR-190a-3p on the proliferation and migration of glioma. METHODS Twenty glioma samples and 6 normal brain tissue samples were collected. Normal human glial cell line HEB and glioma cell lines were used for the experiments. We then used TargetScan to predict the target genes of miR-190a-3p. Dual-luciferase reporter assay was also used to validate. RESULTS Combined with dual-luciferase reporter experiment, we finally verified that YOD1 was the aim, and it was low-expressed in glioma. Besides, a series of mechanism experiments then proved that miR-190a-3p negatively regulates YOD1 expression. CONCLUSIONS Our research was the first to demonstrate the promoting function of miR-190a-3p in the proliferation and migration of glioma and provided new views for the treatment of glioma. miR-190a-3p was expected to be a new target for molecular therapy of glioma.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Lingzhi Li
- Department of ICU in Emergency Center, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yan Chen
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Chun Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Zhongwen Zhi
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Luxia Yan
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yuqian Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Bing Liu
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Qijin Zhai
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| |
Collapse
|
21
|
Gu S, Huang X, Xu X, Liu Y, Khoong Y, Zhang Z, Li H, Gao Y, Zan T. Inhibition of CUB and sushi multiple domains 1 (CSMD1) expression by miRNA-190a-3p enhances hypertrophic scar-derived fibroblast migration in vitro. BMC Genomics 2021; 22:613. [PMID: 34384362 PMCID: PMC8359300 DOI: 10.1186/s12864-021-07920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hypertrophic scar (HTS) is a fibroproliferative skin disorder characterized by excessive cell proliferation, migration, and extracellular matrix (ECM) deposition. The CUB and Sushi multiple domains 1 (CSMD1) has previously been identified as the key regulatory gene of hypertrophic scar by a large sample GWAS study. However, further research has not yet been conducted to verify this finding in other HTS patients and to determine the underlying mechanism. Results In this study, we verified that CSMD1 was downregulated in both HTS tissue and HTS-derived fibroblasts. The knockdown of CSMD1 resulted in enhanced migration and fibronectin1 (FN1) secretion in fibroblasts in vitro. In addition, the upstream and downstream regulatory mechanisms of CSMD1 were also investigated through microRNA (miRNA) databases screening and RNA-sequencing (RNA-seq) respectively. The screening of four common microRNA (miRNA) databases suggested that miR-190a-3p binds to the CSMD1 and may regulate its expression. We confirmed that miR-190a-3p directly targeted the CSMD1–3′-UTR using luciferase reporter assays. Furthermore, the overexpression of miR-190a-3p showed promotion of migratory activity and FN1 secretion in fibroblasts, resembling the effect of CSMD1 knockdown; whereas the knockdown of miR-190a-3p exerted the opposite effect. Finally, transcriptomic analysis showed activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in the CSMD1 knockdown fibroblasts. Conclusions This study has validated the conclusions of the previous GWAS study conducted in Chinese population. In vitro experiments have provided further evidence on the function of CSMD1 in the development of HTS, and have also revealed the underlying upstream and downstream regulating mechanisms. Additionally, the JAK/STAT signaling pathway identified using RNA-seq might provide a potential treatment approach, especially for HTS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07920-8.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China.
| |
Collapse
|
22
|
Yu YZ, Mu Q, Ren Q, Xie LJ, Wang QT, Wang CP. miR-381-3p suppresses breast cancer progression by inhibition of epithelial-mesenchymal transition. World J Surg Oncol 2021; 19:230. [PMID: 34362391 PMCID: PMC8348871 DOI: 10.1186/s12957-021-02344-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence indicates that miRNAs are involved in multiple cellular functions and participate in various cancer development and progression, including breast cancer. Methods We aimed to investigate the role of miR-381-3p in breast cancer. The expression level of miR-381-3p and EMT transcription factors was examined by quantitative real-time PCR (qRT-PCR). The effects of miR-381-3p on breast cancer proliferation and invasion were determined by Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays. The regulation of miR-381-3p on its targets was determined by dual-luciferase analysis, qRT-PCR, and western blot. Results We found that the expression of miR-381-3p was significantly decreased in breast cancer tissues and cell lines. Overexpression of miR-381-3p inhibited breast cancer proliferation and invasion, whereas knockdown of miR-381-3p promoted cell proliferation and invasion in MDA-MB-231 and SKBR3 cells. Mechanistically, overexpression of miR-381-3p inhibited breast cancer epithelial–mesenchymal transition (EMT). Both Sox4 and Twist1 were confirmed as targets of miR-381-3p. Moreover, transforming growth factor-β (TGF-β) could reverse the effects of miR-381-3p on breast cancer progression. Conclusions Our observation suggests that miR-381-3p inhibits breast cancer progression and EMT by regulating the TGF-β signaling via targeting Sox4 and Twist1.
Collapse
Affiliation(s)
- Yong-Zheng Yu
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Qiang Mu
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Qian Ren
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Li-Juan Xie
- Department of Ophthalmology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Qi-Tang Wang
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Cui-Ping Wang
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
23
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
24
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
25
|
Zhao S, Liu X, Kang J, Sun S, Li Y, Zhang J, Li Q, Ji X. Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:168. [PMID: 33569470 PMCID: PMC7867934 DOI: 10.21037/atm-21-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study aimed to explore the molecular mechanism of mild hypothermia in in the treatment of cerebral ischemia, microRNA (miRNA) microarrays and bioinformatics analysis were employed to examine the miRNA expression profiles of rats with mild therapeutic hypothermia after middle cerebral artery occlusion (MCAO). Methods MCAO was induced in Male Sprague–Dawley rats. Mild hypothermia treatment began from the onset of ischemia and maintained for 3 hours. miRNA expressions following focal cerebral ischemia and mild hypothermia treatment were profiled using microarray technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functions of the target genes in mild therapeutic hypothermia after MCAO. 60 min before MCAO, mimics and inhibitor of miR-291b were injected into the right lateral ventricle respectively, then the infarct volume and neuronal apoptosis were analyzed. Results Six upregulated miRNAs and 6 downregulated miRNAs were detected 4 hours after mild therapeutic hypothermia, and after 24 hours, 41 and 10 miRNAs were upregulated and downregulated, respectively. The target genes of the differentially expressed genes were mainly related with multicellular organism development and the mucin type O-glycan biosynthesis pathway was the most enriched KEGG pathway. Among the differentially expressed miRNAs, miR-291b was selected to assess the effects of mild therapeutic hypothermia in MCAO rats. At 24 hours after mild therapeutic hypothermia, miR-291b overexpression was proved to exhibit neuroprotective effects. Conclusions The results showed that miRNAs might play a pivotal role in mild therapeutic hypothermia in cerebral ischemia/reperfusion injury. Further understanding of the mechanism and function of miRNAs would help to illuminate the mechanism of mild therapeutic hypothermia in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jialiang Zhang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Yang X, Zhang Q, Guan B. Circ_0110805 Knockdown Enhances Cisplatin Sensitivity and Inhibits Gastric Cancer Progression by miR-299-3p/ENDOPDI Axis. Onco Targets Ther 2020; 13:11445-11457. [PMID: 33192077 PMCID: PMC7654533 DOI: 10.2147/ott.s279563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer is a prevalent primary stomach tumor. Cisplatin is frequently used to treat gastric cancer. However, the resistance of cisplatin in gastric cancer often occurs, which brings a heavy burden to gastric cancer treatment. Methods In this study, we revealed a novel underlying mechanism about cisplatin-resistant effect in gastric cancer. A Cell Counting Kit-8 (CCK-8) cell viability assay and a xenograft model were performed to evaluate the function of circRNA in the cisplatin resistance of gastric cancer. Results Compared with control groups, we observed that circ_0110805 was highly expressed, the mRNA and protein expression levels of ENDOPDI were dramatically upregulated, and the expression of miR-299-3p was significantly downregulated in gastric cancer cells, cisplatin-resistant gastric cancer tissues or cells. Functionally, circ_0110805 knockdown improved cisplatin sensitivity, induced cell apoptosis, whereas repressed cell viability, migration and invasion in AGS/DDP and HGC-27/DDP cells, which was reversed by miR-299-3p inhibitor. Additionally, ENDOPDI overexpression hindered the effects of miR-299-3p on cisplatin sensitivity and gastric cancer progression. Circ_0110805 knockdown enhanced cisplatin sensitivity in vivo. Mechanistically, circ_0110805 acted as a sponge of miR-299-3p and its targeted ENDOPDI. Conclusion We showed that circ_0110805 knockdown increased the sensitivity of gastric cancer to cisplatin, which also repressed gastric cancer progression by sponging miR-299-3p to downregulate ENDOPDI expression. It might provide a new insight for future studying cisplatin-resistant gastric cancer.
Collapse
Affiliation(s)
- Xi Yang
- Digestive Department, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Qunxiong Zhang
- Digestive Department, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Bugao Guan
- Department of General Surgery, People's Hospital of Jinhu, Huaian, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Jiang C, Dong N, Feng J, Hao M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch 2020; 473:121-130. [PMID: 33196911 DOI: 10.1007/s00424-020-02490-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic stroke is an urgent public health concern and one of the major causes of deaths and disabilities over the world. MicroRNA (miRNA) has become a key mediator of cerebral ischemia-reperfusion (I/R) injuries. However, whether miR-190 is involved in cerebral I/R-induced neuronal damage remains unknown. This study was to investigate the role of miR-190 in the brain I/R injury. We divided the rats into sham, I/R, control, and miR-190-mim (miR-190 mimics) groups. Quantitative real-time polymerase chain reaction (qRT-PCR), Nissl staining, flow cytometry, and western blot were conducted to examine the expression of miR-190 and cell apoptosis in different groups. The results showed that the expression of miR-190 was greatly decreased in rats suffering with I/R. Overexpression of miR-190 significantly reduced the increased neurological scores, brain water contents, infarct volumes, and neuronal apoptosis in rats suffering with I/R. In addition, we found that the expression of RhoA and Rho kinase was greatly elevated in rats suffering with I/R. Bioinformatics analysis indicated that Rho was a target of miR-190. Moreover, overexpression of miR-190 significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while inhibition of miR-190 further upregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis in rats suffering with I/R. Furthermore, knockdown of Rho significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while these effects were inhibited by miR-190 inhibitors in rats suffering with I/R. These results indicate that miR-190 confers protection against brain I/R damage by modulating Rho/Rho-kinase signaling.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, 250001, Shandong Province, People's Republic of China
| | - Jianli Feng
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China.
| | - Maolin Hao
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| |
Collapse
|
28
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
29
|
Liang X, Wu Z, Shen S, Niu Y, Guo Y, Liang J, Guo W. LINC01980 facilitates esophageal squamous cell carcinoma progression via regulation of miR-190a-5p/MYO5A pathway. Arch Biochem Biophys 2020; 686:108371. [PMID: 32325088 DOI: 10.1016/j.abb.2020.108371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Understanding the role of Long non-coding RNAs (lncRNAs) in tumorigenesis in diverse human malignancies would helpful for targeted therapies, containing esophageal squamous cell carcinoma (ESCC). However, the specific role and molecular mechanisms of LINC01980 in ESCC remain unclarified. In this study, we investigated the expression level, function role, and molecular mechanisms of LINC01980 in esophageal cancer cells and ESCC tissues. The high expression of LINC01980 was detected in ESCC tissues and cells, and predicted poor prognosis. LINC01980 promoted the cell proliferation, migration, invasion ability and epithelial-mesenchymal transition (EMT) progress in ESCC cells. In addition, a negative correlation between LINC01980 and miR-190a-5p or miR-190a-5p and MYO5A was observed in ESCC. We found that miR-190a-5p could directly bind with the mRNA of LINC01980 and MYO5A, and it was detected low expression in ESCC. We further demonstrated that the downregulation of MYO5A caused by overexpressing miR-190a-5p was released via upregulation of LINC01980. Functionally, LINC01980 acted as a competitively endogenous RNA (ceRNA) to impact the expression of MYO5A by sponging miR-190a-5p in ESCC. Therefore, these findings suggest that LINC01980 may act as an oncogenic lncRNA in ESCC and LINC01980/miR-190a-5p/MYO5A pathway contributes to the development of ESCC.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Wu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|