1
|
Tsai KW, Liao JB, Tseng HW. Metformin regulates the proliferation and motility of melanoma cells by modulating the LINC00094/miR-1270 axis. Cancer Cell Int 2024; 24:384. [PMID: 39563323 PMCID: PMC11575040 DOI: 10.1186/s12935-024-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Melanoma is an aggressive tumor with a high mortality rate. Metformin, a commonly prescribed diabetes medication, has shown promise in cancer prevention and treatment. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA molecules that play a key role in tumor development by interacting with cellular chromatins. Despite the benefits of metformin, the anticancer mechanism underlying its effect on the regulation of lncRNAs in melanoma remains unclear. METHODS We investigated the lncRNA profiles of human melanoma cells with and without metformin treatment using a next-generation sequencing approach (NGS). Utilizing public databases, we analyzed the expression levels and clinical impacts of LINC00094 and miR-1270 in melanoma. The expression levels of LINC00094 and miR-1270 were verified in human cell lines and clinical samples by real-time PCR and in situ hybridization. The biological roles of LINC00094 and miR-1270 in cell growth, proliferation, cell cycle, apoptosis, and motility were studied using in vitro assays. RESULTS We identify a novel long noncoding RNA, namely LINC00094, whose expression considerably decreased in melanoma cells after metformin treatment. In situ hybridization analysis revealed substantially higher expression of LINC00094 in cutaneous melanoma tissue compared with adjacent normal epidermis and normal control tissues (P < 0.001). In nondiabetic patients with melanoma, the overall survival of high LINC00094 expression group was shorter than the low LINC00094 expression group with borderline statistical significance (log-rank test, P = 0.057). Coexpression analysis of LINC00094 indicated its involvement in the mitochondrial respiratory pathway, with its knockdown suppressing genes associated with mitochondrial oxidative phosphorylation, glycolysis, antioxidant production, and metabolite levels. Functional analysis revealed that silencing-LINC00094 inhibited the proliferation, colony formation, invasion, and migration of melanoma cells. Cell cycle analysis following LINC00094 knockdown revealed G1 phase arrest with reduced cell cycle protein expression. Combined TargetScan and reporter assays revealed a direct link between miR-1270 and LINC00094. Ectopic miR-1270 expression inhibited melanoma cell growth and motility while inducing apoptosis. Finally, through in silico analysis, we identified two miR-1270 target genes, CD276 and centromere protein M (CENPM), which may be involved in the biological functions of LINC00094. CONCLUSIONS Overall, LINC00094 expression may regulate melanoma cell growth and motility by modulating the expression of miR-1270, and targeting genes of CD276 and CENPM indicating its therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Nursing, College of Nursing, Meiho University, Neipu, Pingtung, Taiwan.
| |
Collapse
|
2
|
Mei J, Zuo J, Mei J, Liu G, Xiao P. Circ-NUP98 Promotes Lung Adenocarcinoma Development Through Regulating CBX1 by miR-188-3p. Biochem Genet 2024; 62:3504-3522. [PMID: 38129720 DOI: 10.1007/s10528-023-10609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer has a high morbidity and mortality among malignant tumors, and lung adenocarcinoma (LUAD) is the main type of lung cancer. In recent years, circular RNAs (circRNAs) have been confirmed to play an important role in the generation and development of human cancer. However, the specific role and mechanism of circ-NUP98 in LUAD are still unclear and need to be further investigated. Circ-NUP98, microRNA-188-3p (miR-188-3p), and chromobox homolog 1 (CBX1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell-counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound healing, and transwell assay were used to observe LUAD cell proliferation, apoptosis, migration, invasion, and cell-cycle progression. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were examined using special assay kits. CyclinD1, Bcl-2-related X protein (Bax), matrix metalloproteinase 9 (MMP9) protein, and CBX1 protein levels were determined using Western blot. The interaction between miR-188-3p and circ-NUP98 or CBX1 was identified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. In vivo efficacy of circ-NUP98 was evaluated in a xenograft tumor model. Besides, the expression of CBX1 and KI67 in the tumors was detected by immunohistochemical (IHC) assay. Circ-NUP98 and CBX1 expressions were upregulated in LUAD tissues and cells, and miR-188-3p was decreased. Downregulation of circ-NUP98 could inhibit the proliferation, migration, invasion, and oxidative stress, and promote apoptosis of LUAD cells. Mechanism experiments showed that circ-NUP98 acted as a sponge for miR-188-3p to increase CBX1 expression. Knockdown of circ-NUP98 could inhibit the growth of LUAD tumors in vivo. Circ-NUP98 might promote the malignant development of LUAD via the miR-188-3p/CBX1 axis, which might provide a potential new marker for early diagnosis of LUAD.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Laboratory, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Jing Zuo
- Department of Clinical Laboratory, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Jiazhuan Mei
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China.
| | - Guiju Liu
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China
| | - Peng Xiao
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Li G, Chen W, Jiang K, Huang J, Zhong J, Liu X, Wei T, Gong R, Li Z, Zhu J, Shi H, Lei J. Exosome-mediated Delivery of miR-519e-5p Promotes Malignant Tumor Phenotype and CD8+ T-Cell Exhaustion in Metastatic PTC. J Clin Endocrinol Metab 2024; 109:1601-1617. [PMID: 38078691 DOI: 10.1210/clinem/dgad725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Distant metastases are the primary cause of therapy failure and mortality in patients with papillary thyroid carcinomas (PTCs). However, the underlying mechanism responsible for the initiation of tumor cell dissemination and metastasis in PTCs has rarely been investigated. OBJECTIVE The aim of this study was to investigate effects and underlying molecular mechanisms of circulating exosomal microRNAs (miRNAs) in distant metastatic PTCs. METHODS The most relevant circulating exosomal miRNA to distant metastatic PTCs were verified between distant metastatic PTCs and nondistant metastatic PTCs by miRNA microarray, quantitative real-time polymerase chain reaction (qRT-PCR) assays and receiver operating characteristic (ROC) curves. The parental and recipient cells of that circulating exosomal miRNA were then explored. In vitro and in vivo experiments were further performed to elucidate the function and potential mechanisms of circulating exosomal miRNAs that contribute to the development of distant metastases. RESULTS We determined that PTC-derived exosomal miR-519e-5p was significantly upregulated in the circulatory system in distant metastatic PTCs. Further tests demonstrated that PTC cells can acquire a more malignant phenotype via hnRNPA2B1-mediated sorting of tumor suppressor miR-519e-5p into exosomes to activate Wnt signaling pathway via upregulating PLAGL2. Furthermore, miR-519e-5p included in PTC-derived exosomes can be transferred to recipient CD8+ T cells and aid in tumor immune escape in distant organs through inhibiting Notch signaling pathway by downregulating NOTCH2. CONCLUSION Our findings highlight the dual role of PTC-derived exosomal miR-519e-5p in distant metastasis, which may improve our understanding of exosome-mediated distant metastatic mechanisms.
Collapse
Affiliation(s)
- Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Jiang
- Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rixiang Gong
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hubing Shi
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Saleh RO, Al-Hawary SIS, Jasim SA, Bokov DO, Hjazi A, Oudaha KH, Alnajar MJ, Jumaa SS, Alawadi A, Alsalamy A. A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis. Med Oncol 2024; 41:69. [PMID: 38311682 DOI: 10.1007/s12032-023-02275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs' involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | | | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Sally Salih Jumaa
- College of Pharmacy/National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah,, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
5
|
Liu M, Guo B, Zhang G, Qi H. Circ_0091579 Knockdown Inhibited HCC Proliferation and Glutamine Metabolism Through miR-1270/YAP1 Axis. Biochem Genet 2024; 62:208-228. [PMID: 37314551 DOI: 10.1007/s10528-023-10386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/14/2023] [Indexed: 06/15/2023]
Abstract
A growing number of studies have indicated that circRNAs play an important role in the progression of malignant tumors, including hepatocellular carcinoma (HCC). In this study, we designed to explore the abnormal expression of hsa_circ_0091579 (circ_0091579) and its role in the pathogenesis of HCC. In this study, the mRNA levels of circ_0091579, miR-1270, and Yes-associated protein (YAP1) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). RNase R and Actinomycin D were used to test the stability of circ_0091579. Cell Counting Kit-8 (CCK-8) was used to measure cell viability. Tubule formation assay was used to determine the effect of HCC cells on the number of tubes. Cell apoptosis was detected by flow cytometry. Western blot was used for the protein levels. Transwell and wound healing tests were used to measure the abilities of invasion and migration. The effect of circ_0091579 knockdown on tumor growth was verified in vivo by xenograft tumor assay and Immunohistochemistry (IHC) analysis. Dual-luciferase reporter or RIP assay was used to detect the relationship between miR-1270 and circ_0091579 or YAP1. Glutamine metabolism was determined by ELISA and western blot assays. In the present study, we found that circ_0091579 was upregulated in HCC tissues and cells. Inhibited circ_0091579 expression significantly suppressed proliferation and promoted apoptosis of HCC cells. Moreover, circ_0091579 knockdown inhibited tumor growth in vivo. Bioinformatic prediction and luciferase assay showed that circ_0091579 acted as a molecular sponge for miR-1270 and YAP1 was a target gene of miR-1270. MiR-1270 silencing could reverse the inhibitory effect of circ_0091579 knockdown on HCC progression, and YAP1 overexpression also could reverse the suppressive effect of circ_0091579 silencing on HCC progression. Meanwhile, miR-1270 inhibitor could invert the negative regulation effect of circ_0091579 silencing on YAP1 expression. Circ_0091579 promoted HCC progression by regulating the miR-1270/YAP1 axis, and our study might offer novel biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Ming Liu
- Department of Radiotherapy, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Tai'an, Shandong, China
| | - Bing Guo
- Department of Radiotherapy, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Tai'an, Shandong, China
| | - Ge Zhang
- Department of Radiotherapy, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Tai'an, Shandong, China
| | - Huanpeng Qi
- Department of Radiotherapy, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Tai'an, Shandong, China.
| |
Collapse
|
6
|
Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung cancer: Insight into their roles in metastasis. Biomed Pharmacother 2023; 166:115260. [PMID: 37633056 DOI: 10.1016/j.biopha.2023.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. A major contributing factor to the poor survival rates in lung cancer is the high prevalence of metastasis at the time of diagnosis. To address this critical issue, it is imperative to investigate the mechanisms underlying lung cancer metastasis. Circular RNAs (circRNAs), a distinct type of ribonucleic acid characterized by their unique circular structure, have been implicated in the progression of various diseases. Recent studies have highlighted the close association between circRNAs and the occurrence and development of lung cancer, particularly in relation to metastasis. In this review, we provide a concise overview of the expression patterns and prognostic significance of circRNAs in lung cancer. Additionally, we summarized the current understanding of the clinical relevance of circRNAs in lung cancer metastasis. Furthermore, we systematically focused on the roles of circRNAs in each step of lung cancer metastasis, reflecting the sequential progression of this process. Notably, circRNAs exhibit dual functionality in lung cancer metastasis, acting both as facilitators and inhibitors of metastatic processes. Given their potential, circRNAs hold promise as novel biomarkers and therapeutic targets for lung cancer metastasis, warranting further investigation.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Luo
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
7
|
Chen H, Yang W, Li Y, Ji Z. PLAGL2 promotes bladder cancer progression via RACGAP1/RhoA GTPase/YAP1 signaling. Cell Death Dis 2023; 14:433. [PMID: 37454211 PMCID: PMC10349853 DOI: 10.1038/s41419-023-05970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
PLAGL2 is upregulated in various tumors, including bladder cancer (BCa). However, the mechanisms underlying the tumorigenic effects of PLAGL2 in BCa remain unclear. In our study, we proved that PLAGL2 was overexpressed in BCa tissues and correlated with decreased survival. Functionally, PLAGL2 deficiency significantly suppressed the proliferation and metastasis of BCa cells in vitro and in vivo. RNA sequencing, qRT‒PCR, immunoblotting, immunofluorescence staining, luciferase reporter, and ChIP assays revealed that overexpressed PLAGL2 disrupted the Hippo pathway and increased YAP1/TAZ activity by transactivating RACGAP1. Further investigations demonstrated that PLAGL2 activated YAP1/TAZ signaling via RACGAP1-mediated RhoA activation. Importantly, the RhoA inhibitor simvastatin or the YAP1/TAZ inhibitor verteporfin abrogated the proproliferative and prometastatic effects of BCa enhanced by PLAGL2. These findings suggest that PLAGL2 promotes BCa progression via RACGAP1/RhoA GTPase/YAP1 signaling. Hence, the core nodes of signaling may be promising therapeutic targets for BCa.
Collapse
Affiliation(s)
- Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
9
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Chen X, Zhu X, Shen X, Liu Y, Fu W, Wang B. IGF2BP3 aggravates lung adenocarcinoma progression by modulation of PI3K/AKT signaling pathway. Immunopharmacol Immunotoxicol 2023; 45:370-377. [DOI: 10.1080/08923973.2022.2150636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Zhang Z, Huang Y, Guo AY, Yang L. Research progress of circular RNA molecules in aging and age-related diseases. Ageing Res Rev 2023; 87:101913. [PMID: 36934850 DOI: 10.1016/j.arr.2023.101913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-chain endogenous closed circular RNAs that do not have a poly(A) tail at the 3' end and a cap structure at the 5' end and are connected end-to-end by covalent bonds. CircRNAs, which are pervasive, diverse, stable, and conversed, have functions in transcriptional control and protein translation and play vital roles in modulating cell senescence, individual aging, as well as the occurrence and development of age-related diseases. Studies in recent years were reviewed from aspects including the biosynthesis mechanisms, classification, expression, biomedical functions, associations with aging and age-related diseases, and potential clinical applications of circRNAs. It will provide the theoretic basis for exploring the molecular biological mechanisms of aging, using circRNA as the therapeutic target to delay aging, and finding therapeutic strategies to prevent and treat age-related diseases.
Collapse
Affiliation(s)
- Zhidan Zhang
- Departments of Infectious Disease, The First Hospital of China Medical University, Shenyang, PR China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, PR China
| | - AYao Guo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
12
|
Liu X, Wang Y, Zhou G, Zhou J, Tian Z, Xu J. circGRAMD1B contributes to migration, invasion and epithelial-mesenchymal transition of lung adenocarcinoma cells via modulating the expression of SOX4. Funct Integr Genomics 2023; 23:75. [PMID: 36867268 DOI: 10.1007/s10142-023-00972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Lung adenocarcinoma (LUAD) represents the subtype of non-small-cell lung cancer (NSCLC), with the high morbidity over the world. Mounting studies have highlighted the important roles of circular RNAs (circRNA) in cancers, including LUAD. This study mainly focused on revealing the role of circGRAMD1B and its relevant regulatory mechanism in LUAD cells. RT-qPCR and Western blot were conducted to detect the expression of target genes. Function assays were performed to determine the effect of related genes on migration, invasion, and epithelial-mesenchymal transition (EMT) of LUAD cells. Mechanism analyses were conducted to figure out the specific mechanism with regard to circGRAMD1B and its downstream molecules as well. Based on the experimental results, circGRAMD1B was upregulated in LUAD cells and promoted the migration, invasion, and EMT of LUAD cells. Mechanically, circGRAMD1B sponged miR-4428 to upregulate the expression of SOX4. In addition, SOX4 activated the expression of MEX3A at the transcriptional level, thereby modulating PI3K/AKT pathway to facilitate LUAD cell malignant behaviors. In conclusion, circGRAMD1B is discovered to modulate miR-4428/SOX4/MEX3A axis to further activate PI3K/AKT pathway, finally boosting migration, invasion, and EMT of LUAD cells.
Collapse
Affiliation(s)
- Xingjun Liu
- Department of Thoracic Surgery, Shanxi Bethune Hospital, No. 99 Longcheng St, Taiyuan, 030032, Shanxi, China
| | - Yi Wang
- Department of Respiratory and Critical Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Guixing Zhou
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Jinbo Zhou
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Zhongmin Tian
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Jie Xu
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China.
| |
Collapse
|
13
|
Jia T, Wang L, Zhang W, Hu Y, Tuerxun K. circSOX4 Enhances Hepatocellular Carcinoma Progression via miR-218-5p/YY1 Signaling. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3370440. [PMID: 37143506 PMCID: PMC10154097 DOI: 10.1155/2023/3370440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 05/06/2023]
Abstract
Liver cancer ranks fifth leading malignancy in incidence and third in mortality worldwide. Recently, its comprehensive treatment has greatly progressed; however, the prognosis is still poor due to difficulties in early diagnosis, high recurrence and metastasis rates, and lack of specific treatment. The search for new molecular biological factors that target the early diagnosis of cancer, predict recurrence, evaluate treatment efficacy, and identify high-risk individuals and specific therapeutic targets during follow-up becomes a great urgent task. circSOX4 is upregulated in lung cancer and plays the role of oncogene. This study attempted to assess circSOX4's role in hepatocellular carcinoma (HCC). HCC tissues and cells were collected to measure circSOX4 level by qRT-PCR, cell behaviors by CCK-8 assay and Transwell assay, and relationship between circSOX4 and downstream targets by dual-luciferase gene assay and RIP. circSOX4 was upregulated in HCC tissue and cell lines, and its level was correlated with reduced patient survival. Interestingly, circSOX4 knockdown reduced HCC behaviors, glucose consumption, and lactate production. Furthermore, circSOX4 knockdown resulted in decreased in vivo tumor growth. circSOX4 was confirmed to target miR-218-5p, and the effect of circSOX4 downregulation on inhibiting tumor growth was diminished after miR-218-5p inhibition or YY1 overexpression in HCC cells. circSOX4 expression is closely associated with HCC through miR-218-5p and YY1-dependent pathways and may be a target and marker for HCC.
Collapse
Affiliation(s)
- Tengfei Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China 830001
| | - Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310002
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China 830001
| | - Yuting Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China 830001
| | - Kamili Tuerxun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China 830001
| |
Collapse
|
14
|
Wang F, Yu C, Chen L, Xu S. Landscape of circular RNAs in different types of lung cancer and an emerging role in therapeutic resistance (Review). Int J Oncol 2022; 62:21. [PMID: 36562354 PMCID: PMC9812256 DOI: 10.3892/ijo.2022.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is one of the most common malignant tumor types and the leading cause of cancer‑associated death worldwide. Different types of lung cancer exhibit differences in terms of pathophysiology and pathogenesis, and also treatment and prognosis. Accumulating evidence has indicated that circular RNAs (circRNAs) are abnormally expressed among different types of lung cancer and confer important biological functions in progression and prognosis. However, studies comparing different circRNAs in lung cancer subtypes are scarce. Furthermore, circRNAs have an important role in drug resistance and are related to clinicopathological features in lung cancer. Summaries of the association of circRNAs with drug resistance are also scarce in the literature. The present study outlined the biological functions of circRNAs and focused on discriminating differential circRNA patterns and mechanisms in three different types of lung cancer. The emerging roles of circRNAs in the resistance to chemotherapy, targeted therapy, radiotherapy and immunotherapy were also highlighted. Understanding these aspects of circRNAs sheds light on novel physiological and pathophysiological processes of lung cancer and suggests the application of circRNAs as biomarkers for diagnosis and prognosis, as well as therapeutic resistance.
Collapse
Affiliation(s)
- Fan Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Chuting Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China,Correspondence to: Dr Ling Chen, Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China,Professor Sheng Xu, National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
15
|
Hussen BM, Abdullah SR, Hama Faraj GS, Rasul MF, Salihi A, Ghafouri-Fard S, Taheri M, Mokhtari M. Exosomal circular RNA: a signature for lung cancer progression. Cancer Cell Int 2022; 22:378. [PMID: 36457039 PMCID: PMC9714134 DOI: 10.1186/s12935-022-02793-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Membrane vesicles having a diameter of 30-150 nm are known as exosomes. Several cancer types secrete exosomes, which may contain proteins, circular RNAs (circRNAs), microRNAs, or DNA. CircRNAs are endogenous RNAs that do not code for proteins and can create continuous and covalently closed loops. In cancer pathogenesis, especially metastasis, exosomal circRNAs (exo-circRNAs) have a crucial role mainly due to the frequently aberrant expression levels within tumors. However, neither the activities nor the regulatory mechanisms of exo-circRNAs in advancing lung cancer (LC) are obvious. A better understanding of the regulation and network connections of exo-circRNAs will lead to better treatment for LCs. The main objective of the current review is to highlight the functions and mechanisms of exo-circRNAs in LC and assess the relationships between exo-circRNA dysregulation and LC progression. In addition, underline the possible therapeutic targets based on exo-circRNA modulating.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Mokhtari
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Circ-GSK3B up-regulates GSK3B to suppress the progression of lung adenocarcinoma. Cancer Gene Ther 2022; 29:1761-1772. [PMID: 35821283 DOI: 10.1038/s41417-022-00489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
GSK3B is the mRNA form of glycogen synthase kinase 3 beta (GSK-3β), which is a critical repressor of Wnt/β-catenin signaling pathway and generally inhibited in cancer cells. Plenty of researches have disclosed that circular RNAs, namely circRNAs exert important functions in the progression of various human malignancies including lung adenocarcinoma (LUAD). Therefore, we attempted to explore whether there existed certain circRNAs that could mediate LUAD development by regulating GSK3B expression and Wnt/β-catenin pathway. In the present research, circ-GSK3B (hsa_circ_0066903) was found to be significantly down-regulated in LUAD tissues and cells and it suppressed the proliferation, migration and stemness of LUAD cells. Furthermore, it was discovered that circ-GSK3B competitively sponged miR-3681-3p and miR-3909 to elevate GSK3B expression. Circ-GSK3B could impair the binding ability of FKBP51 to GSK-3β to inhibit the phosphorylation of GSK-3βS9, resulting in the inactivation of Wnt/β-catenin signaling. In addition, the regulatory effect of circ-GSK3B on LUAD tumorigenesis and cell progression was testified through in vitro and in vivo rescue experiments. In conclusion, circ-GSK3B suppressed LUAD development through up-regulating and activating GSK3B.
Collapse
|
17
|
Sufianov A, Begliarzade S, Beilerli A, Liang Y, Ilyasova T, Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res 2022; 8:83-88. [DOI: 10.1016/j.ncrna.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
18
|
Xue X, Chen Y. Circular RNA (circ)_0129047 upregulates bone morphogenetic protein receptor type 2 expression to inhibit lung adenocarcinoma progression by sponging microRNA (miR)-1206. Bioengineered 2022; 13:12067-12087. [PMID: 35570745 PMCID: PMC9275972 DOI: 10.1080/21655979.2022.2070580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) play significant roles in the tumorigenesis and progression of various cancers, including lung adenocarcinoma (LAC). However, their underlying biological functions in LAC remain unclear. Here, we investigated the tumor suppressor role of the newly identified circRNA, circ_0129047, in LAC tumorigenesis and progression. The expression levels of circ_0129047, microRNA (miR)-1206, and bone morphogenetic protein receptor type 2 (BMPR2) mRNA in LAC cells and tissues were monitored using reverse transcription-quantitative polymerase chain reaction. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were used to confirm the targeting relationships among circ_0129047, miR-1206, and BMPR2 mRNA. Functional experiments for A549 and PC9 cells were performed using cell counting kit-8, bromodeoxyuridine enzyme-linked immunosorbent, caspase-3 activity, cell adhesion, wound healing, and transwell assays. Circ_0129047 expression levels were reduced in LAC cells and tissues. Mechanistically, we discovered that circ_0129047 could sponge miR-1206, and miR-1206 could directly target BMPR2. In addition, circ_0129047 or BMPR2 knockdown facilitated the viability, proliferation, adhesion, migration, and invasion, while inhibiting the apoptosis of LAC cells. Furthermore, the inhibitory effects of circ_0129047 or BMPR2 overexpression on the malignant phenotype of LAC cells could be reversed by the overexpression of miR-1206. In conclusion, circ _0129047 was found to play a tumor suppressive role in LAC progression; it upregulated BMPR2 expression to inhibit LAC progression by sponging miR-1206. Abbreviations: non-small cell lung cancer (NSCLC); small cell lung cancer (SCLC); lung adenocarcinoma (LAC); Circular RNA (circRNA); MicroRNA (miRNA); bone morphogenetic protein (BMP); squamous cell lung cancer (SCC); RNA immunoprecipitation (RIP)
Collapse
Affiliation(s)
- Xinxin Xue
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajun Chen
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
20
|
Inhibitory effect of protonic bis(5-amino-1,10-phenanthroline) on proliferation of hepatocellular carcinoma and its molecular mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Zhao Z, Li X, Cui Z, Tong T, Zhang Y, Zhang Y, Yang X, Keerthiga R, Fu C, Fu A. Synthesis of Hemiprotonic Phenanthroline-Phenanthroline + Compounds with both Antitumor and Antimicrobial Activity. J Med Chem 2022; 65:2532-2547. [PMID: 35073076 DOI: 10.1021/acs.jmedchem.1c01982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Currently, cancer patients with microbial infection are a severe challenge in clinical treatment. To address the problem, we synthesized hemiprotonic compounds based on the unique structure of hemiprotonic nucleotide base pairs in a DNA i-motif. These compounds were produced from phenanthroline (ph) dimerization with phenanthroline as a proton receptor and ammonium as a donor. The biological activity shows that the compounds have a selective antitumor effect through inducing cell apoptosis. The molecular mechanism could be related to specific inhibition of transcription factor PLAGL2 of tumor cells, assessed by transcriptomic analysis. Moreover, results show that the hemiprotonic ph-ph+ has broad-spectrum antibacterial and antifungal activities, and drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, are sensitive to the compound. In animal models of liver cancer with fungal infection, the ph-ph+ retards proliferation of hepatoma cells in tumor-bearing mice and remedies pneumonia and encephalitis caused by Cryptococcus neoformans. The study provides a novel therapeutic candidate for cancer patients accompanied by infection.
Collapse
Affiliation(s)
- Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhihong Cui
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Tingting Tong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yingying Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuping Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoxi Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
22
|
Wang G, Du W, Che L, Gao X, Zhao R, Duan J, Gu Z, Ma Q. High Expression of PLAGL2 is Associated With Poor Prognosis in High-Grade Glioma. Front Genet 2022; 12:787746. [PMID: 35222518 PMCID: PMC8863765 DOI: 10.3389/fgene.2021.787746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Pleomorphic adenoma gene like-2 (PLAGL2) has been implicated in the development and progression of diverse malignancies, including glioblastoma. An increasing number of studies have reported that dysregulated expression of PLAGL2 is a common phenomenon in different malignancies. However, the mechanism and biological functions of PLAGL2 in patients with high-grade glioma (HGG) remain unclear. In addition, the expression and clinical significance of PLAGL2 in HGG have not yet been reported. Herein, we investigated the expression patterns and prognostic values of PLAGL2 in patients with HGG by using various databases, including Tumor Immune Estimation Resource 2.0 (TIMER2.0), GENT2, ONCOMINE, GEPIA, Human Protein Atlas, and Gene Expression Omnibus datasets. In the present study, we analyzed the relationship between PLAGL2 mRNA expression and clinical parameters in 184 HGG cases and found that PLAGL2 presented positively high expression and was relevant to poor prognosis. Immunohistochemistry analysis confirmed the overexpression of PLAGL2 protein, which is mainly expressed in the nucleus of glioma. Additionally, a high level of expression of the PLAGL2 gene was associated with lower survival in progression-free survival and overall survival in GBM patients. The correlation analysis between PLAGL2 and immune infiltration related to the abundance of B cells, CD8+ T cells, CD4+ T cells, macrophages, DCs, and neutrophils was also performed using TIMER2.0. GSEA results showed that high PLAGL2 expression was associated with cell migration, proliferation, actin cytoskeletal, and angiogenesis. To sum up, our findings indicated that PLAGL2 could serve as an independent prognostic biomarker and might be a potential therapeutic target for HGG, which should be further investigated.
Collapse
Affiliation(s)
- Gang Wang
- Department of Rehabilitation, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lingyi Che
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xianzheng Gao
- Department of Pathology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ruihua Zhao
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Juan Duan
- Department of Cardiology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Zhuoyu Gu,
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Zhuoyu Gu,
| |
Collapse
|
23
|
Su L, Zhao J, Su H, Wang Y, Huang W, Jiang X, Gao S. CircRNAs in lung adenocarcinoma: diagnosis and therapy. Curr Gene Ther 2021; 22:15-22. [PMID: 34856899 DOI: 10.2174/1566523221666211202095258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Lung adenocarcinoma (LUAD) is the common histological subtype of non-small-cell lung carcinoma (NSCLC). Circular RNAs (circRNAs) represent a new class of non-coding RNAs (ncRNAs) involved in the development of cancer. Accumulating evidence indicated that a large number of circular RNAs were found to be involved in many biological processes, including tumor initiation, proliferation and progression. These circRNAs present great potentials as new biomarkers and vital targets for disease diagnosis and prognosis. In this review, we mainly focus on the differentially expressed circRNAs and their functions in the pathogenesis of LUAD, which makes it possible for the utility of circRNAs as novel biomarkers for early diagnosis and therapy. Especially, it is helpful to develop circRNAs as crucial therapeutic targets, thus providing a promising biomedical application in the field of cancer gene therapy.
Collapse
Affiliation(s)
- Lijia Su
- The Hubei Key Laboratory of Tumor Microenvironment and immunotherapy, China Three Gorges University, Yichang. China
| | - Jinying Zhao
- The Third-Grade Pharmacological Laboratory of Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang. China
| | - Huahua Su
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang. China
| | - Yanhua Wang
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang. China
| | - Wenfeng Huang
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang. China
| | - Xuemei Jiang
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang. China
| | - Shiyao Gao
- The Hubei provincial hospital of Traditional Chinese Medicine, Wuhan. China
| |
Collapse
|
24
|
Wan J, Ding G, Zhou M, Ling X, Rao Z. Circular RNA hsa_circ_0002483 promotes growth and invasion of lung adenocarcinoma by sponging miR-125a-3p. Cancer Cell Int 2021; 21:533. [PMID: 34641879 PMCID: PMC8513360 DOI: 10.1186/s12935-021-02241-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Increasing evidence indicates that the aberrant expression of circular RNAs (circRNAs) is involved in the pathogenesis and progression of lung adenocarcinoma (LUAC). However, the function and molecular mechanisms of hsa_circ_0002483 (circ_0002483) in LUAC remain unclear. Methods The association between circ_0002483 expression and clinicopathological characteristics and prognosis in patients with LUAC was analyzed by fluorescence in situ hybridization. The functional experiments such as CCK-8, colony formation and Transwell assays and a subcutaneous tumor model were conducted to determine the role of circ_0002483 in LUAC cells. The specific binding between circ_0002483 and miR-125a-3p was validated by RNA immunoprecipitation, luciferase gene report and qRT-PCR assays. The effects of circ_0002483 on miR-125a-3p-mediated C-C motif chemokine ligand 4 (CCL4)-CCR5 axis were assessed by Western blot analysis. Results We found that circ_0002483 was upregulated in LUAC tissue samples and associated with Tumor Node Metastasis (TNM) stage and poor survival in patients with LUAC. Knockdown of circ_0002483 inhibited proliferation, colony formation and invasion of A549 and PC9 cells in vitro, whereas overexpression of circ_0002483 harbored the opposite effects. Furthermore, circ_0002483 sponged miR-125a-3p and negatively regulated its expression. CCL4 was identified as a direct target of miR-125a-3p. The rescue experiments showed that miR-125a-3p mimics reversed the tumor-promoting effects of circ_0002483 by targeting CCL4-CCR5 axis in A549 and PC9 cells. In addition, the in vivo experiment further validated that knockdown of circ_0002483 repressed tumor growth. Conclusions Our findings demonstrated that circ_0002483 could act as a sponge of miR-125a-3p to upregulate CCL4-CCR5 axis, contributing to the tumorigenesis of LUAC, and represent a potential therapeutic target for LUAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02241-y.
Collapse
Affiliation(s)
- Jun Wan
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Guanggui Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Min Zhou
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zhanpeng Rao
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| |
Collapse
|
25
|
Dong H, Zhou J, Cheng Y, Wang M, Wang S, Xu H. Biogenesis, Functions, and Role of CircRNAs in Lung Cancer. Cancer Manag Res 2021; 13:6651-6671. [PMID: 34466035 PMCID: PMC8403226 DOI: 10.2147/cmar.s324812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
CircRNAs, a class of endogenous non-coding RNAs with closed-loop structures, have attracted increasing attention because of their good stability, high specificity of tissue expression, long half-life, and highly conserved sequence. CircRNAs have multiple biological functions, including miRNA sponge, transcription regulator, protein translation, interaction with protein, RNA maturation, and so on. These functions indicate the important role of circRNAs in tumorigenesis and malignant progression and their potential as potent diagnostic biomarkers and therapeutic molecules. In recent years, an increasing body of evidence suggests that circRNAs play a crucial role in proliferation, migration, invasion, and apoptosis of lung cancer cells. Therefore, circRNAs have gradually become a research focus in the diagnosis and treatment of lung cancer patients. This review summarizes the classification, biogenesis, and function of circRNAs, and discusses the role of circRNAs in the diagnosis, prognosis, and treatment of lung cancer patients.
Collapse
Affiliation(s)
- Huanhuan Dong
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Junliang Zhou
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Yue Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Meiqi Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Shuqing Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Hui Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| |
Collapse
|
26
|
Yang T, Huo J, Xu R, Su Q, Tang W, Zhang D, Zhu M, Zhan Y, Dai B, Zhang Y. Selenium sulfide disrupts the PLAGL2/C-MET/STAT3-induced resistance against mitochondrial apoptosis in hepatocellular carcinoma. Clin Transl Med 2021; 11:e536. [PMID: 34586726 PMCID: PMC8441139 DOI: 10.1002/ctm2.536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Overexpression of pleomorphic adenoma gene like-2 (PLAGL2) is associated with tumorigenesis. However, its function in HCC is unclear, and there are currently no anti-HCC drugs that target PLAGL2. Drug repositioning may facilitate the development of PLAGL2-targeted drug candidates. METHODS The expression of PLAGL2 in HCC clinical tissue samples and HCC cell lines was analyzed by western blotting. The constructed HCC cell models were used to confirm the underlying function of PLAGL2 as a therapeutic target. Multiple in vitro and in vivo assays were conducted to determine the anti-proliferative and apoptosis-inducing effects of selenium sulfide (SeS2 ), which is clinically used for the treatment of seborrheic dermatitis and tinea versicolor. RESULTS PLAGL2 expression was higher in HCC tumor tissues than in normal adjacent tissues. Its overexpression promoted the resistance of HCC cells of mitochondrial apoptosis through the regulation of the downstream C-MET/STAT3 signaling axis. SeS2 exerted significant anti-proliferative and apoptosis-inducing effects on HCC cells in a PLAGL2-dependent manner. Mechanistically, SeS2 suppressed C-MET/STAT3, AKT/mTOR, and MAPK signaling and triggered Bcl-2/Cyto C/Caspase-mediated intrinsic mitochondrial apoptosis both in vitro and in vivo. CONCLUSIONS Our data reveal an important role of PLAGL2 in apoptosis resistance in HCC and highlight the potential of using SeS2 as a PLAGL2 inhibitor in patients with HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Jian Huo
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Rui Xu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Qi Su
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Wenjuan Tang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Dongdong Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Man Zhu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Yingzhuan Zhan
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Bingling Dai
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| |
Collapse
|
27
|
Gao L, Zhang L. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for lung adenocarcinoma. BMC Cancer 2021; 21:849. [PMID: 34301211 PMCID: PMC8299662 DOI: 10.1186/s12885-021-08462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background More and more studies have proven that circular RNAs (circRNAs) play vital roles in cancer development via sponging miRNAs. However, the expression pattern of competing endogenous RNA (ceRNA) in lung adenocarcinoma (LUAD) remains largely unclear. The current study explored functional roles and the regulatory mechanisms of circRNA as ceRNAs in LUAD and their potential impact on LUAD patient prognosis. Methods In this study, we systematically screened differential expression circRNAs (DEcircRNAs), miRNAs (DEmiRNAs) and mRNAs (DEGs) associated with LUAD. Then, DEcircRNAs, DEmiRNAs and DEGs were selected to construct a circRNA–miRNA–mRNA prognosis-related regulatory network based on interaction information from the ENCORI database. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the genes in the network to predict the potential underlying mechanisms and functions of circRNAs in LUAD. In addition, Kaplan–Meier survival analysis was performed to evaluate clinical outcomes of LUAD patients, and drug sensitivity analysis was used to screen potential biomarkers for drug treatment of patients with LUAD. Results As a result, 10 circRNAs were aberrantly expressed in LUAD tissues. The ceRNA network was built, which included 3 DEcircRNAs, 6 DEmiRNAs and 157 DEGs. The DEGs in the ceRNA network of hsa_circ_0049271 enriched in biological processes of cell proliferation and the Jak-STAT signaling pathway. We also detected 7 mRNAs in the ceRNA network of hsa_circ_0049271 that were significantly associated with the overall survival of LUAD patients (P < 0.05). Importantly, four genes (PDGFB, CCND2, CTF1, IL7R) identified were strongly associated with STAT3 activation and drugs sensitivity in GDSC. Conclusions In summary, a ceRNA network of hsa_circ_0049271 was successfully constructed, which including one circRNA, two miRNAs, and seven mRNAs. Seven mRNAs (PDGFB, TNFRSF19, CCND2, CTF1, IL11RA, IL7R and MAOA) were remarkably associated with the prognosis of LUAD patients. Among seven mRNA species, four genes (PDGFB, CCND2, CTF1, and IL7R) could be considered as drug targets in LUAD. Our research will provide new insights into the prognosis-related ceRNA network in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08462-8.
Collapse
Affiliation(s)
- Lei Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Economic And Technological Development Zone, Hefei, 230601, Anhui Province, China
| | - Ling Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
28
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Ghafouri-Fard S, Dinger ME, Maleki P, Taheri M, Hajiesmaeili M. Emerging role of circular RNAs in the pathobiology of lung cancer. Biomed Pharmacother 2021; 141:111805. [PMID: 34120067 DOI: 10.1016/j.biopha.2021.111805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is among the leading causes of cancer mortality and incidence in both sexes. Different classes of transcripts have been proposed as molecular markers in this type of cancer. Circular RNAs (circRNAs) are a group of transcripts with circular enclosed and stable configuration. These transcripts are stable in the blood, thus can be used as markers for detection of disorders. Moreover, dysregulation of circRNAs in the affected tissues of patients with different cancers shows their possible roles in the carcinogenesis. Several circRNAs including circPRKC1, circFGFR1, hsa-circ-0020123 and circTP63 have been found to be up-regulated in lung cancer samples. Meanwhile, cir-ITCH, hsa_circ_100395, hsa_circ_0033155, circRNF13, circNOL10, circ-UBR5, circPTK2 and circCRIM1 have been shown to be down-regulated in lung cancer tissues compared with noncancerous counterparts. Finally, prognostic values of circPRKC1, circFGFR1, has-circ-00120123, circTP63, circ_0067934, CDR1as, hsa_circRN_103809 and some other circRNAs have been appraised in lung cancer. In the current manuscript, we describe the impact and utility of circRNAs in the pathology of lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Parichehr Maleki
- Department of Molecular Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Cao Y, Tao Q, Kao X, Zhu X. Hsa-circRNA-103809 Promotes Hepatocellular Carcinoma Development via MicroRNA-1270/PLAG1 Like Zinc Finger 2 Axis. Dig Dis Sci 2021; 66:1524-1532. [PMID: 32683589 DOI: 10.1007/s10620-020-06416-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death in the worldwide. A great number of reports manifested that circular RNA hsa-circRNA-103809 (circRNA-103809) could work in several cancers. AIMS This study aimed to explore the function and mechanism of circRNA-103809 in HCC. METHODS Gene expressions were detected by quantitative real-time polymerase chain reaction. Colony formation, cell counting kit-8, transwell and wound healing assays were implemented to check the role of circRNA-103809 in HCC. Subcellular fractionation analysis was designed to figure out the cellular location of circRNA-103809. Luciferase reporter assay and RNA pull down assay were employed to verify the relationships among RNAs. RESULTS CircRNA-103809 was highly expressed in HCC cell lines. After interfering circRNA-103809, the proliferation, migration, invasion and epithelial-to-mesenchymal transition process were all hindered in HCC cells. Significantly, circRNA-103809 competed with PLAG1 like zinc finger 2 (PLAGL2) for binding with microRNA-1270 (miR-1270), which formulated a competing endogenous RNA network in HCC. Thereafter, we verified the tumor-facilitating effect of circRNA-103809/miR-1270/PLAGL2 axis on biological behaviors of HCC cells. CONCLUSION Hsa-circRNA-103809 promoted development of HCC via sequestering miR-1270 and up-regulating PLAGL2.
Collapse
Affiliation(s)
- Yajuan Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210000, Jiangsu, China
| | - Qingsong Tao
- Department of General Surgery, Zhongda Hospital, Clinical School of Southeast University, Nanjing, 210000, Jiangsu, China
| | - Xiaoming Kao
- Department of General Surgery, Jinling Hospital, Nanjing Medical School of Nanjing University, Nanjing, 210000, Jiangsu, China
| | - Xinhua Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
31
|
Li S, Liu Y, Qiu G, Luo Y, Li X, Meng F, Li N, Xu T, Wang Y, Qin B, Xia S. Emerging roles of circular RNAs in non‑small cell lung cancer (Review). Oncol Rep 2021; 45:17. [PMID: 33649862 PMCID: PMC7876988 DOI: 10.3892/or.2021.7968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of novel endogenous transcripts with limited protein‑coding abilities. CircRNAs have been demonstrated to function as critical regulators of tumor development and distant metastasis through binding to microRNAs (miRNAs) and interacting with RNA‑binding proteins, thereby regulating transcription and translation. Emerging evidence has illustrated that certain circRNAs can serve as biomarkers for diagnosis and prognosis of cancer, and/or serve as potential therapeutic targets. Expression of functional circRNAs is commonly dysregulated in cancer and this is correlated with advanced Tumor‑Node‑Metastasis stage, lymph node status, distant metastasis, poor differentiation and shorter overall survival of cancer patients. Recently, an increasing number of studies have shown that circRNAs are closely associated with NSCLC. Functional experiments have revealed that circRNAs are intricately associated with the pathological progression of NSCLC. The present review provides an overview of the regulatory effect of circRNAs in the development and progression of NSCLC, taking into consideration various physiological and pathological processes, such as proliferation, apoptosis, invasion and migration, and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yize Liu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Xiang Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fei Meng
- Department of Gynaecology and Obstetrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Nanyang Li
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tiance Xu
- Second Department of Neurology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
- Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Baoli Qin
- Department of Internal Medicine, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Shuyue Xia
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
- Dean's Office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|
32
|
Circ-HMGA2 (hsa_circ_0027446) promotes the metastasis and epithelial-mesenchymal transition of lung adenocarcinoma cells through the miR-1236-3p/ZEB1 axis. Cell Death Dis 2021; 12:313. [PMID: 33762580 PMCID: PMC7991034 DOI: 10.1038/s41419-021-03601-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Lung adenocarcinoma (LUAD) has high incidence and mortality rates worldwide; however, its detailed molecular pathology remains unclear. Although circRNAs have gradually been identified as molecules that are differentially expressed in tumors and play key roles in tumor progression, their role in LUAD is poorly understood. Through microarray analysis, we obtained the circRNA expression profile of LUAD and found that circ-HMGA2 (hsa_circ_0027446), a novel RNA, is highly expressed in LUAD. The high expression of circ-HMGA2 was further verified in 36 paired LUAD and adjacent normal tissues. Functionally, circ-HMGA2 promoted LUAD cell metastasis in vitro and in vivo. The luciferase reporter assay and FISH results showed that circ-HMGA2 interacts with miR-1236-3p and that miR-1236-3p interacts with ZEB1. In addition, miR-1236-3p was expressed at low levels in LUAD, inhibited LUAD cell metastasis, and suppressed the function of circ-HMGA2. ZEB1 is an EMT-promoting transcription factor. The PCR and WB analysis results showed that circ-HMGA2 promotes both ZEB1 expression and EMT. MiR-1236-3p had the opposite effect, reversing the promotive effect of circ-HMGA2 on EMT. In summary, circ-HMGA2 promotes LUAD cell metastasis through the miR-1236-3p/EMT axis, indicating that it could be a therapeutic target in LUAD.
Collapse
|
33
|
Jiang M, Fang S, Zhao X, Zhou C, Gong Z. Epithelial-mesenchymal transition-related circular RNAs in lung carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0238. [PMID: 33710806 PMCID: PMC8185863 DOI: 10.20892/j.issn.2095-3941.2020.0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly complex phenotypic conversion during embryogenesis, and is important for metastasis, which contributes to tumor deterioration and poor prognoses of cancer patients. Lung carcinoma has a high tendency to develop the EMT. Circular RNAs (circRNAs) are involved in EMT-related cell invasion and metastasis in various types of cancers. Moreover, circRNAs have been found to be a link to EMT-related transcription factors and EMT-associated signaling pathways. This review mainly focuses on the influence of EMT-related circRNAs on lung carcinomas. More specifically, the roles of EMT-inducing and EMT-suppressive circRNAs in lung carcinomas are discussed. With circRNAs potentially becoming promising biomarkers and therapeutic targets for cancer managements, they will hopefully stimulate the interest of medical workers in the early diagnosis, personalized treatment, and positive prognoses in the era of precision oncology.
Collapse
Affiliation(s)
- Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
34
|
Wang Y. circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis. Cancer Cell Int 2021; 21:85. [PMID: 33536022 PMCID: PMC7860208 DOI: 10.1186/s12935-021-01791-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, with a poor prognosis. The roles of circular RNAs (circRNAs) in tumors have been initially clarified. In this study, we probed into the functions and underlying molecular mechanisms of circ-ANXA7 in LUAD. Methods According to circRNA microarray analysis based on 40 pairs of LUAD tissues and non-tumor tissues, a novel circ-ANXA7 was up-regulated in LUAD, which was verified in LUAD tissues and cells by RT-qPCR. Correlation between its expression and clinical features of LUAD was analyzed. When transfected with sh-circ-ANXA7, proliferation, invasion, and migration of LUAD cells were determined by a series of functional assays. Furthermore, tumor growth was investigated in nude mice injected with sh-circ-ANXA7. Dual luciferase report and gain and loss assays were used to confirm the relationships between circ-ANXA7 and miR-331, miR-331 and LAD1. Results circ-ANXA7 was up-regulated in LUAD tissues and cells. Its high expression promoted proliferation, migration, and invasion of LUAD cells as well as tumor growth. High circ-ANXA7 expression usually predicted a poorer prognosis for LUAD patients. Furthermore, circ-ANXA7 could accelerate proliferation and invasion of LUAD cells by targeting miR-331. miR-331 directly bound to the 3′-UTR of LAD1. LAD1 induced proliferation and invasion of LUAD cells, which was reversed after co-transfection with circ-ANXA7 knockdown. LAD1 expression could be an independent prognostic marker for LUAD by univariate and multivariate analysis. Conclusions Our research identified a novel circ-ANXA7 for LUAD, which could facilitate proliferation, migration, and invasion of LUAD cells by miR-331/ LAD1 axis. circ-ANXA7 could become a promising prognosis and treatment target for LUAD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Medical Laboratory, Zhumadian City Central Hospital, No. 747 Zhonghua Avenue, Yicheng District, Zhumadian, 463000, Henan, China.
| |
Collapse
|
35
|
葛 祥, 张 智, 智 晓, 汪 进. [Research Progress of Circular RNA in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:1095-1100. [PMID: 33357317 PMCID: PMC7786223 DOI: 10.3779/j.issn.1009-3419.2020.102.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the most common malignant tumor with the highest morbidity and mortality worldwide, and its imposes an insupportable burden on patients due to its poor prognosis. The diagnosis and treatment of lung cancer is under great pressure. Therefore, it is urgent to explore effective therapeutic targets and molecular markers. Circular RNA (circRNA) is a kind of covalently closed non-coding RNAs, which has attracted much attention due to its conservation, stability and tissue specificity. Many studies have found that circRNA participates in the regulation of lung cancer through various mechanisms such as sponging miRNA and plays a part vital role in the early diagnosis, treatment and prognosis evaluation. In recent years, there have been numerous studies on circRNA in lung cancer. This paper summarizes the current progress of circRNA in the diagnosis, treatment and prognosis of lung cancer.
.
Collapse
Affiliation(s)
- 祥伟 葛
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 智博 张
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 晓玉 智
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 进良 汪
- />100853 北京,解放军总医院第一医学中心肿瘤内科Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
36
|
Zhao W, Wang J, Luo Q, Peng W, Li B, Wang L, Zhang C, Duan C. Identification of LINC02310 as an enhancer in lung adenocarcinoma and investigation of its regulatory network via comprehensive analyses. BMC Med Genomics 2020; 13:185. [PMID: 33308216 PMCID: PMC7731780 DOI: 10.1186/s12920-020-00834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LADC) is a major subtype of non-small cell lung cancer and has one of the highest mortality rates. An increasing number of long non-coding RNAs (LncRNAs) were reported to be associated with the occurrence and progression of LADC. Thus, it is necessary and reasonable to find new prognostic biomarkers for LADC among LncRNAs. METHODS Differential expression analysis, survival analysis, PCR experiments and clinical feature analysis were performed to screen out the LncRNA which was significantly related to LADC. Its role in LADC was verified by CCK-8 assay and colony. Furthermore, competing endogenous RNA (ceRNA) regulatory network construction, enrichment analysis and protein-protein interaction (PPI) network construction were performed to investigate the downstream regulatory network of the selected LncRNA. RESULTS A total of 2431 differentially expressed LncRNAs (DELncRNAs) and 2227 differentially expressed mRNAs (DEmRNAs) were from The Cancer Genome Atlas database. Survival analysis results indicated that lnc-YARS2-5, lnc-NPR3-2 and LINC02310 were significantly related to overall survival. Their overexpression indicated poor prognostic. PCR experiments and clinical feature analysis suggested that LINC02310 was significantly correlated with TNM-stage and T-stage. CCK-8 assay and colony formation assay demonstrated that LINC02310 acted as an enhancer in LADC. In addition, 3 targeted miRNAs of LINC02310 and 414 downstream DEmRNAs were predicted. The downstream DEmRNAs were then enriched in 405 Gene Ontology terms and 11 Kyoto Encyclopedia of Genes and Genomes pathways, which revealed their potential functions and mechanisms. The PPI network showed the interactions among the downstream DEmRNAs. CONCLUSIONS This study verified LINC02310 as an enhancer in LADC and performed comprehensive analyses on its downstream regulatory network, which might benefit LADC prognoses and therapies.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qingxi Luo
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Xin T, Li S, Zhang Y, Kamali X, Liu H, Jia T. circRNA Hsa_circ_0020850 Silence Represses the Development of Lung Adenocarcinoma via Regulating miR-195-5p/IRS2 Axis. Cancer Manag Res 2020; 12:10679-10692. [PMID: 33149675 PMCID: PMC7604289 DOI: 10.2147/cmar.s257764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background The dysregulated circular RNAs (circRNAs) are relevant to lung adenocarcinoma development. Nevertheless, the function and mechanism of hsa_circ_0020850 (circ_0020850) in lung adenocarcinoma development are uncertain. Methods A total of 35 lung adenocarcinoma patients were recruited, and the tumor and normal tissue samples were harvested. A549 and PC-9 cells were exhibited for the experiments in vitro. circ_0020850, microRNA-195-5p (miR-195-5p) and insulin receptor substrate 2 (IRS2) abundances were detected via quantitative reverse transcription-polymerase chain reaction or Western blot. Cell proliferation, apoptosis, migration and invasion were measured via cell counting kit-8 (CCK8) assay, colony formation, flow cytometry, transwell and Western blot. The relationship between miR-195-5p and circ_0020850 or IRS2 was tested via dual-luciferase reporter analysis. The function of circ_0020850 on cell growth in vivo was measured via xenograft model. Results circ_0020850 expression was enhanced in lung adenocarcinoma tissues and cells. circ_0020850 silence suppressed cell proliferation, migration and invasion and facilitated apoptosis. miR-195-5p was targeted via circ_0020850, and its knockdown reversed the inhibitive effect of circ_0020850 silence on lung adenocarcinoma development. IRS2 was targeted via miR-195-5p, and miR-195-5p inhibited cell proliferation, migration and invasion and induced apoptosis via decreasing IRS2. circ_0020850 knockdown decreased IRS2 expression via regulating miR-195-5p. circ_0020850 down-regulation decreased lung adenocarcinoma xenograft tumor growth. Conclusion circ_0020850 knockdown repressed lung adenocarcinoma cell proliferation, migration and invasion and promoted apoptosis via regulating miR-195-5p and IRS2.
Collapse
Affiliation(s)
- Tuye Xin
- Department of Respiration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Shuangshuang Li
- Department of Respiration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Ying Zhang
- Department of Respiration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Xiayizha Kamali
- Department of Respiration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Hui Liu
- Department of Respiration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Tengfei Jia
- Department of Gastrointestinal Cancer Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China
| |
Collapse
|
38
|
Yong M, Hu J, Zhu H, Jiang X, Gan X, Hu L. Circ-EEF2 facilitated autophagy via interaction with mir-6881-3p and ANXA2 in EOC. Am J Cancer Res 2020; 10:3737-3751. [PMID: 33294264 PMCID: PMC7716148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023] Open
Abstract
Circular RNAs, a special class of non-coding RNA with closed circular structure, have been increasingly proven to be involved in the progression of various tumors. However, the biological functions of circular RNAs in epithelial ovarian cancer (EOC) tissues remain a mystery. In this study, we detected the function of circEEF2 (has-circ-0048559) in EOC tissues. Firstly, the basic characteristics including closed circular structure and spliced mature sequence length of circEEF2 were confirmed. The location and expression in EOC tissues was detected by fluorescence in situ hybridization (FISH). The regulatory effect of circEEF2 on autophagy, proliferation, and invasion were investigated in SKOV3 and A2780 cells. The relationship between circEEF2 and mir-6881-3p was confirmed using dual-luciferase reporter gene assay. The binding of circEEF2 with ANXA2 was confirmed using RNA-pulldown assay and MALDI-TOF-MS. We found that the expression level of circEEF2 was higher in EOC tissue than in normal tissue. CircEEF2 promoted autophagy, proliferation, and invasion. CircEEF2-regulated EOC proliferation and invasion are closely related to the occurrence of autophagy. Mechanistically, circEEF2 harbor miR-6881-3p to upregulate the latter's targets ATG5 and ATG7. Moreover, circEEF2 could directly bind with ANXA2 to inhibit the expression of p-mTOR. In conclusion, findings of the current study illustrate that circEEF2 promoted autophagy, proliferation, and invasion of EOC by interacting with miR-6881-3p and ANXA2.
Collapse
Affiliation(s)
- Min Yong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Xinwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Xiaolin Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| |
Collapse
|
39
|
Zhao S, Li S, Liu W, Wang Y, Li X, Zhu S, Lei X, Xu S. Circular RNA Signature in Lung Adenocarcinoma: A MiOncoCirc Database-Based Study and Literature Review. Front Oncol 2020; 10:523342. [PMID: 33163392 PMCID: PMC7581697 DOI: 10.3389/fonc.2020.523342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/14/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with a structure of covalently closed continuous loops, which can regulate gene expression by acting as a microRNA sponge or through other mechanisms. Recent studies have identified that the expression of candidate circRNAs are dysregulated in various tumors and hence are considered as promising diagnostic or therapeutic targets across cancer types. However, the expression and function of circRNAs in lung adenocarcinoma (LUAD) remains unclear. In this article, we investigated the expression of circRNAs in LUAD via MiOncoCirc, which is the first and comprehensive database characterizing circRNAs across >2,000 cancer samples using an exome capture RNA sequencing. We identified seven abnormally expressed circRNAs in LUAD, including circCDR1-AS, circHIPK3, circFNDC3B, circPCMTD1, circRHOBTB3, circFAM13B, and circMAN1A2, as well as conducted a literature review about the function and features of these circRNAs. Previous studies have demonstrated that circCDR1-AS, circMAN1A2, and circHIPK3 were upregulated and significantly correlated with a poor survival, or promoted the tumor progression in lung cancer, whereas other circRNAs have not been fully explored. Besides, we reviewed all the publications regarding circRNAs and LUAD, and noticed that the dysregulation of these circRNAs impacts the development of LUAD through a variety of regulatory mechanisms. In conclusion, the underlying mechanisms of aberrant expression and functions of circRNAs in LUAD are worthy of being further investigated.
Collapse
Affiliation(s)
- Shikang Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuo Li
- Department of Respiratory and Critical Care, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Liu
- Department of Respiratory Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanye Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiongfei Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Lei
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
40
|
Ding J, Wang Q, Guo N, Wang H, Chen H, Ni G, Li P. CircRNA circ_0072995 promotes the progression of epithelial ovarian cancer by modulating miR-147a/CDK6 axis. Aging (Albany NY) 2020; 12:17209-17223. [PMID: 32877369 PMCID: PMC7521494 DOI: 10.18632/aging.103668] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Increasing evidence has indicated that circular RNAs (circRNAs) play vital roles in modulating tumor progression. However, regulatory roles and underlying mechanisms of circRNA circ_0072995 in epithelial ovarian cancer (EOC) are not well characterized. RESULTS Circ_0072995 was up regulated in EOC afflicted tissues and cell lines (HO8910 and A2780), and was mainly located in the cytoplasm. The expression of circ_0072995 was associated with the pathological grade of EOC for respective patients. Functional experiments revealed that circ_0072995 promoted EOC cell proliferation, migration, induced apoptosis, as well as enhanced tumorigenesis in vivo. Mechanistic analyses indicated that circ_0072995 may have acted as a sponge of miR-147a such as to relieve repressive effects of miR-147a upon its target CDK6. CONCLUSIONS Our results revealed that circ_0072995 promoted EOC progression through the circ_0072995/miR-147a/CDK6 axis and may represent a strategy for treatment of EOC afflicted patients. METHODS Expression of circ_0072995 was evaluated in 40 EOC tissue samples and cell lines by qRT-PCR. The location of circ_0072995 was determined via nuclear-cytoplasmic fractionation. A series of functional experiments facilitated determinations of effects of circ_0072995 on EOC progression in vitro, and in vivo. Underlying mechanisms and influence of circ_0072995 on EOC were confirmed by bioinformatic analyses, luciferase reporter assays, qRT-PCR, and Western blotting.
Collapse
Affiliation(s)
- Jin Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, P.R. China,Department of Obstetrics and Gynecology, First Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui, P.R. China
| | - Qingwei Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui, P.R. China
| | - Nan Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui, P.R. China
| | - Hao Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 310000, P.R. China
| | - He Chen
- Department of Obstetrics and Gynecology, Shenzhen Second People’s Hospital, First Hospital of Shenzhen University, Shenzhen 518000, Guangzhou, P.R. China
| | - Guantai Ni
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui, P.R. China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, P.R. China
| |
Collapse
|
41
|
Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer 2020; 19:119. [PMID: 32758239 PMCID: PMC7409473 DOI: 10.1186/s12943-020-01231-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs) are single-stranded RNA molecules with unique structures and important functions. With the development of RNA sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
42
|
Peng Z, Fang S, Jiang M, Zhao X, Zhou C, Gong Z. Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta 2020; 510:264-271. [PMID: 32710944 DOI: 10.1016/j.cca.2020.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs having a covalently closed loop structure generated from back-splicing of pre-mRNA. These novel RNAs are characterized by high stability, abundance and conservation. Accumulating evidence has revealed that circRNAs are intimately associated with the pathogenesis, development and progression of multiple human diseases, including respiratory tract cancers. CircRNAs may serve as oncogenes or tumor suppressors to influence cell proliferation, differentiation, apoptosis, invasion and metastasis. CircRNAs may act as microRNA (miRNA) sponges, interact with RNA-binding proteins (RBPs), regulate gene transcription and/or translate into mini-peptides or proteins. In this review, we discuss recent progress in understanding the pathologic roles of circRNAs in respiratory tract cancers, such as nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, and especially lung adenocarcinoma. We further discuss the diagnostic, therapeutic and prognostic roles as potential biomarkers in respiratory tract cancers, providing insight into the possibilities of applying circRNAs as therapeutic targets and biomarkers in precision oncology.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China.
| | - Zhaohui Gong
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|