1
|
Chen X, Zhang S, Jiang D, Li Y, Yin M, Fang C, Lv Z, Huang Y, Yang H, Zhang H, Zhang J, Fu Q, Wang H, Jiang W, Chen Y, Li X. Prenatal heavy metal exposure and pediatric asthma, allergic rhinitis, atopic dermatitis: a systematic review and meta-analysis. Expert Rev Clin Immunol 2024; 20:1401-1409. [PMID: 39109589 DOI: 10.1080/1744666x.2024.2390024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/21/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE We review the prevalence of allergic diseases in children across prenatal exposures to heavy metals. METHODS This systematic review and meta-analysis is registered in the PROSPERO database (CRD42023478471). A comprehensive search of PubMed, Web of Science, Medline and Cochrane library was conducted from the database inception until 31 October 2023. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the quality of included studies. We used a random-effects model to summarize the effects from the studies. RESULTS A total of 16 studies were included, 120,065 mother-child pairs enrolled. The NOS scores indicated that the quality of the literature included in the study was of a high standard. CONCLUSION The final results indicate that prenatal exposure to Pb increased the incidence of wheeze and Eczema in infants, and exposure to Ni and CD increased the incidence of AD in infants.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shipeng Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Dongxi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yu Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Man Yin
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Caishan Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zeyi Lv
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yue Huang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hao Yang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hui Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Jianfeng Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qinwei Fu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hanyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Wenjing Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yang Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xinrong Li
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
2
|
Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, Zhang Q, Wu Y, An J, Ni N, Liu C, Han Y, Zhang S, Schmitt CA, Deng J, Yu Y, Du J. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene 2024; 43:1328-1340. [PMID: 37950038 PMCID: PMC11065682 DOI: 10.1038/s41388-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Non-coding RNAs are responsible for oncogenesis and the development of stemness features, including multidrug resistance and metastasis, in various cancers. Expression of lncRNA MIR31HG in lung cancer tissues and peripheral sera of lung cancer patients were remarkably higher than that of healthy individuals and indicated a poor prognosis. Functional analysis showed that MIR31HG fosters stemness-associated malignant features of non-small cell lung cancer cells. Further mechanistic investigation revealed that MIR31HG modulated GLI2 expression via WDR5/MLL3/P300 complex-mediated H3K4me and H3K27Ace modification. In vivo MIR31HG repression with an antisense oligonucleotide attenuated tumor growth and distal organ metastasis, whereas MIR31HG promotion remarkably encouraged cellular invasion in lung and liver tissues. Our data suggested that MIR31HG is a potential diagnostic indicator and druggable therapeutic target to facilitate multiple strategic treatments for lung cancer patients.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Xinyuan Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jingjing Qi
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Na Ni
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria
- Charité-Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site, Berlin, Germany
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| | - Yong Yu
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| |
Collapse
|
3
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
5
|
Roy RK, Yadav R, Sharma U, Kaushal Wasson M, Sharma A, Tanwar P, Jain A, Prakash H. Impact of non-coding RNAs on cancer directed immune therapies: Now then and forever. Int J Cancer 2022; 151:981-992. [PMID: 35489027 DOI: 10.1002/ijc.34060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone, and inter-association of non-coding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, non-coding RNAs (ncRNAs) such as microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation non-coding molecules that influence a variety of cellular processes like immunity, cellular differentiation, and tumor development. During tumor development, temporal changes in miRNA/LncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the up-regulation of Inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | |
Collapse
|
6
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
7
|
Co-upregulation of miR-31 and its host gene lncRNA MIR31HG in oral squamous cell carcinoma. J Dent Sci 2021; 17:696-706. [PMID: 35756773 PMCID: PMC9201660 DOI: 10.1016/j.jds.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background/purpose Several long non-coding RNAs (lncRNAs) harbor miRNA in their genome. MIR31HG harbors miR-31 in its intron and it is speculated that they are co-expressed in tumors. This study addressed whether frequent miR-31 and MIR31HG co-upregulation occurred in oral squamous cell carcinoma (OSCC) and its clinical implications. Materials and methods Microarray was performed to retrieve dis-regulated lncRNAs from tissue sample. The ectopic gene expression was carried out to specify the phenotypic influences of selected lncRNA screened from bioinformatic algorithms. The expression of miR-31 and MIR31HG in tissues or scrapped samples was analyzed using qRT-PCR. The implications of gene expression as related to metastasis or survival were further dissected. Results Microarray identified disrupted transcripts including MIR31HG and other 152 lncRNAs aberrantly expressed in OSCC tissues. In silico algorithms annotated an eminent involvement of aberrant transcripts in the regulation of cell cycle, extracellular modulation, adhesion, and wound healing. The enhancement of proliferation, wound healing, invasion and anchorage-independent colony formation mediated by MIR31HG was ascertained by ectopic expression in OECM1 cells. Besides, co-upregulation of miR-31 and MIR31HG was conspicuous in OSCC tissues. High expression of miR-31 and MIR31HG designated a trend of worse OSCC prognosis. Interestingly, high MIR31HG expression defined a very poor survival in stage IV diseases. By contrast, high miR-31 expression predicted nodal metastasis in stage I–III diseases. Conclusion Assessment of miR-31 and MIR31HG expression in OSCC may enable the prognostic prediction. The candidate lncRNAs isolated from this work can be further validated as crucial factors contributing to OSCC pathogenesis.
Collapse
|
8
|
He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell Int 2021; 21:313. [PMID: 34130697 PMCID: PMC8207720 DOI: 10.1186/s12935-021-02013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.
Collapse
Affiliation(s)
- Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Qin F, Xu H, Wei G, Ji Y, Yu J, Hu C, Yuan C, Ma Y, Qian J, Li L, Huo J. A Prognostic Model Based on the Immune-Related lncRNAs in Colorectal Cancer. Front Genet 2021; 12:658736. [PMID: 33959151 PMCID: PMC8093825 DOI: 10.3389/fgene.2021.658736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors with a poor prognosis. At present, the pathogenesis is not completely clear. Therefore, finding reliable prognostic indicators for CRC is of important clinical significance. In this study, bioinformatics methods were used to screen the prognostic immune-related lncRNAs of CRC, and a prognostic risk scoring model based on immune-related lncRNAs signatures were constructed to provide a basis for prognostic evaluation and immunotherapy of CRC patients. Methods The clinical information and RNA-seq data of CRC patients were obtained from The Cancer Genome Atlas (TCGA) database. The information of immune-related lncRNA was downloaded from the immunology database and analysis portal. The differentially expressed immune-related lncRNAs (IRLs) were screened by the edgeR package of R software. The prognostic value of IRLs was studied. Based on Cox regression analysis, a prognostic index (IRLPI) based on IRLs was established, and the relationship between the risk score and the clinicopathological characteristics of CRC was analyzed to determine the effectiveness of the risk score model as an independent prognostic factor. Results A total of 240 differentially expressed IRLs were identified between normal colorectal cancer tissues and normal colorectal cancer tissues, in which 8 were significantly associated with the survival of CRC patients (P < 0.05), including LINC00461, LINC01055, ELFN1-AS1, LMO7-AS1, CYP4A22-AS1, AC079612.1, LINC01351, and MIR31HG. And most of the lncRNAs related to survival were risk factors for the prognosis of CRC. The index established based on the 7 survival-related IRLs found to be highly accurate in monitoring CRC prognosis. Besides, IRLPI was significantly correlated with a variety of pathological factors and immune cell infiltration. Conclusion Eight immune-related lncRNAs closely related to the prognosis of CRC patients were identified from the TCGA database. At the same time, an independent IRLPI was constructed, which may be helpful for clinicians to assess the prognosis of patients with CRC and to formulate individualized treatment plans.
Collapse
Affiliation(s)
- Fengxia Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Houxi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoli Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialin Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Canhong Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyi Yuan
- Department of Oncology, Ganyu District Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yuzhu Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingchang Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Yin H, Cao L, Zhao H, Yang Y. Effects of dexmedetomide, propofol and remifentanil on perioperative inflammatory response and lung function during lung cancer surgery. Am J Transl Res 2021; 13:2537-2545. [PMID: 34017412 PMCID: PMC8129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of combined anesthesia with dexmedetomide, propofol and remifentanil on perioperative inflammatory response and pulmonary function in patients with lung cancer. METHODS 90 patients with lung cancer admitted to our hospital from April 2017 to April 2019 were selected. According to different anesthesia schemes, patients undergoing combined anesthesia with propofol and remifentanil were included in group A (GA), and patients receiving combined anesthesia with dexmedetomidine, propofol and remifentanil were included in group B (GB). The blood gas, pulmonary function index, inflammatory factor level in serum, anesthetic effect and complications were compared between the two groups. RESULTS HR indexes at T1 and T2 in GB were significantly lower than those in GA (P<0.001). There was no significant fluctuation in PaCO2 and PaO2 indexes in the two groups at different time points (P>0.05). At T0, T1 and T2, RV/TLC levels in serum increased significantly in the two groups. (MVV-VE)/FEV1 and MVV/FEV levels were significantly decreased (all P<0.05). The fluctuation levels of RV/TLC, (MVV-VE)/FEV1 and MVV/FEV levels in serum of GB were significantly lower than those of GA at T1 and T2 (P<0.05). At T0, T1 and T2, the levels of inflammatory factors in serum were significantly decreased in the two groups (P<0.05), but the levels of inflammatory factors in serum of GB were significantly lower than those of GA at T1 and T2 (P<0.05). The VAS scores of GB were significantly lower than those of GA at 1 hour and 4 hours after operation (P<0.05). Ramsay scores of GB were significantly higher than those of GA at 1 hour and 4 hours after operation (P<0.05). The restlessness score and choking cough score in GB were lower than those in GA (P<0.05). Perioperative complications in GB were better than those in GA (P<0.05). CONCLUSION On the basis of propofol and remifentanil anesthesia, the combination of dexmedetomidine for anesthesia induction can achieve satisfactory anesthesia effect. On the basis of propofol and remifentanil anesthesia combined with dexmedetomidine for anesthesia induction, it can significantly inhibit the inflammatory response of lung cancer patients during perioperative period and it can more effectively stabilize the blood gas microcirculation and lung function of patients.
Collapse
Affiliation(s)
- Hengming Yin
- Department of Anesthesiology, Qinghai Provincial People’s HospitalXining 810001, Qinghai Province, China
| | - Lin Cao
- Department of Anesthesiology, Eastern Theater General Hospital, Qinhuai District Medical AreaNanjing 210002, Jiangsu Province, China
| | - Hongyu Zhao
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250014, Shandong Province, China
| | - Yongjian Yang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250014, Shandong Province, China
| |
Collapse
|
11
|
Zhang C, Ren X, Liu Z, Tu C. Upregulated expression of LncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 is correlated with unfavorable clinical outcomes in cancers. BMC Cancer 2020; 20:879. [PMID: 32928135 PMCID: PMC7489002 DOI: 10.1186/s12885-020-07348-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Background The nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) is a long non-coding RNA aberrantly expressed in human malignancies. We aimed to analyze available data to evaluate the correlation between NNT-AS1 expression and cancer prognosis. Methods Literature retrieval was performed by systematic searching related databases from inception to April 2, 2020. Studies regarding correlation between NNT-AS1 expression, survival outcomes and clinical characteristics of cancer patients were collected and pooled to calculate the the hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (95% CIs). Results Ten studies comprising 699 patients were included, all of which were conducted in China according to literature selection criteria. Overexpression of NNT-AS1 had a significant association with unfavorable overall survival (OS) (HR = 2.08, 95% CI: 1.84–2.36, P < 0.001). Stratified analysis showed that tumor type, sample size, follow-up months, and survival analysis approach did not change the predictive value of NNT-AS1 on OS. Furthermore, elevated NNT-AS1 level had significant association with distant metastasis (DM) (OR = 2.45, 95% CI: 1.39–4.30), lymph node metastasis (LNM) (OR = 3.92, 95% CI: 1.35–11.41), TNM stage (OR = 4.25, 95% CI: 1.71–10.56), and vascular invasion (OR = 3.98, 95% CI: 2.06–7.71), but was not associated with age and gender. The TCGA dataset further consistently showed that the NNT-AS1 expression was associated with poor OS and disease-free survival. Conclusions High expression of NNT-AS1 is associated with unfavorable survival outcomes and poor clinicopathologic characteristics. However, large-cohort data and geographical studies are still needed to further validate the prognostic value of NNT-AS1 in cancers.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
12
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
13
|
Tu C, Yang K, Wan L, He J, Qi L, Wang W, Lu Q, Li Z. The crosstalk between lncRNAs and the Hippo signalling pathway in cancer progression. Cell Prolif 2020; 53:e12887. [PMID: 32779318 PMCID: PMC7507458 DOI: 10.1111/cpr.12887] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022] Open
Abstract
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|