1
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
2
|
Zhang J, Duan H, Feng Z, Han X, Gu C. Retraction Note: Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress. Oncogenesis 2023; 12:39. [PMID: 37495575 PMCID: PMC10371980 DOI: 10.1038/s41389-023-00484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- Jianhao Zhang
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Hongjian Duan
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Zhipeng Feng
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Chaohui Gu
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China.
| |
Collapse
|
3
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Han J, Qu H, Han M, Ding Y, Xie M, Hu J, Chen Y, Dong H. Retraction Note: MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene 2023:10.1038/s41388-023-02774-8. [PMID: 37420031 DOI: 10.1038/s41388-023-02774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Affiliation(s)
- Jing Han
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Hongbo Qu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou City, 423000, Hunan, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yichao Ding
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Mingwei Xie
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, 400010, Chongqing, China
| | - Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China, 400062, Chongqing, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China.
| |
Collapse
|
5
|
Wu C, Bian X, Zhang L, Hu Y, Wu Y, Pei T, Han X. Retraction Note: Long noncoding RNA LINC00968 inhibits proliferation, migration and invasion of lung adenocarcinoma through targeting miR-22-5p/CDC14A axis. 3 Biotech 2023; 13:120. [PMID: 37033386 PMCID: PMC10073366 DOI: 10.1007/s13205-023-03531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
[This retracts the article DOI: 10.1007/s13205-021-02981-8.].
Collapse
Affiliation(s)
- Chao Wu
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Xuzhao Bian
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Liyuan Zhang
- Department of Respiratory Medicine of Thoracic Hospital, Xi’an International Medical Center Hospital, No.777 Xitai Road, Gaoxin District, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Yuanyuan Hu
- Medical College, Xijing University, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Yang Wu
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Tianli Pei
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - XinPeng Han
- Department of Respiratory Medicine of Thoracic Hospital, Xi’an International Medical Center Hospital, No.777 Xitai Road, Gaoxin District, Xi’an, 710100 Shaanxi People’s Republic of China
| |
Collapse
|
6
|
Wang N, Chen Y, Shi C, Lin Z, Xie H. Retraction Note: CREB3L4 promotes angiogenesis and tumor progression in gastric cancer through regulating VEGFA expression. Cancer Gene Ther 2023:10.1038/s41417-023-00613-2. [PMID: 37024643 DOI: 10.1038/s41417-023-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Nannan Wang
- Department of Digestive Internal Medicine, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Yuanneng Chen
- Department of Digestive Internal Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning city, Guangxi Province, China
| | - Chengwei Shi
- Department of the First School of Clinical Medicine Surgery, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Zuoguang Lin
- Department of Digestive Internal Medicine, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Huaxia Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
7
|
Chen J, Yu S, Lang Z, Jin Y, Zhou G, Tao Q, Wang X, Zheng J. Development and validation of a potential biomarker to improve the assessment of liver fibrosis progression in patients with chronic hepatitis B. J Med Virol 2023; 95:e28239. [PMID: 36258661 DOI: 10.1002/jmv.28239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 10/16/2022] [Indexed: 01/12/2023]
Abstract
We aimed to develop and validate a novel combined score to improve the assessment of liver fibrosis progression in patients with chronic hepatitis B (CHB). In this study, a total of 331 CHB patients from three cohorts who underwent liver biopsy were enrolled, and the Scheuer system was used for liver fibrosis classification. The combined score was derived by principal component analysis of key differentially expressed genes. For significant liver fibrosis (≥S2), the areas under the receiver operating characteristics curves (AUROCs) of the combined score were 0.838, 0.842, and 0.881 in the three cohorts, respectively. And for advanced liver fibrosis (≥S3), the AUROCs were 0.794, 0.801, and 0.901, respectively. Compared with the results of AUROCs for aspartate aminotransferase≥to≥platelet ratio (APRI) and fibrosis index based on four factors (FIB-4) in the validation cohorts, better clinical diagnostic value for assessing the progression of liver fibrosis was found in the combined score. Additionally, univariate ordered logistic regression analysis indicated that the combined score could serve as a more superior and stable risk factor than APRI and FIB-4 in the assessment of liver fibrosis. For CHB patients with normal alanine aminotransferase (ALT), our results further emphasized the diagnostic value of the combined score for significant fibrosis (≥S2) and advanced fibrosis (≥S3). Moreover, it was found that patients with the high combined score, who were associated with the advanced fibrosis stage, had higher levels of drug sensitivity and immune checkpoint expression. In conclusion, the novel combined score could serve as a potential biomarker and contribute to improving the assessment of fibrosis stage in CHB patients.
Collapse
Affiliation(s)
- Ji Chen
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jin
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study. BIOLOGY 2022; 11:biology11091262. [PMID: 36138741 PMCID: PMC9495750 DOI: 10.3390/biology11091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 01/07/2023]
Abstract
Background: Hepatitis C virus (HCV) therapy lowers risk of hepatocellular carcinoma (HCC). Little is known about factors driving/preceding HCC in treated persons. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) regulate host response and pathogenesis of disease. We investigated plasma levels of these RNAs and select serum markers before, during, and after HCV therapy, preceding HCC. Methods: Of 187 DAA treated HCV patients where therapy oriented longitudinal sampling was performed at a time without HCC diagnosis, 9 were subsequently diagnosed with HCC within 2 years of therapy. They were matched with 7 patients not diagnosed with HCC over the same time period. RNASeq was performed on plasma, and serum was assessed for biomarkers of inflammation by ELISA. Results: HCC diagnosis was 19 months (6-28) after therapy start in the HCC group. 73 and 63 miRs were differentially expressed at baseline (before DAA therapy) and 12 weeks after DAA therapy comparing HCC and non-HCC groups. Several lncRNA- showed differential expression as well. Several miRNA suppressors of cancer-related pathways, lncRNA- and mRNA-derived stabilized short RNAs were consistently absent in the plasma of patients who developed HCC. Serum IP10, and MCP-1 level was higher in the HCC group 12 weeks after therapy, and distinct miRNAs correlated with IP10 and MCP-1. Finally, in a focused analysis of 8 miRNAs best associated with HCC we observed expression of mi576 and mi-5189 correlation with expression of a select group of PBMC mRNA. Conclusions: These results are consistent with complex interplay between RNA-mediated host immune regulation and cancer suppression, strikingly skewed 12 weeks following therapy, prior to HCC diagnosis.
Collapse
|
9
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
10
|
Ren Z, Yang Q, Guo J, Huang H, Li B, Yang Z, Tian X. Circular RNA hsa_circ_0000073 Enhances Osteosarcoma Cells Malignant Behavior by Sponging miR-1252-5p and Modulating CCNE2 and MDM2. Front Cell Dev Biol 2021; 9:714601. [PMID: 34568326 PMCID: PMC8459753 DOI: 10.3389/fcell.2021.714601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: An increasing number of studies have demonstrated that circular RNAs (circRNAs) are involved in tumor progression. However, the role of hsa_circ_0000073 in osteosarcoma (OS) is still not fully elucidated. Methods: Quantitative reverse transcription-polymerase chain reaction or Western blot was used to detect the gene expression. GeneChip analysis, bioinformatics, luciferase reporter, and RNA immunoprecipitation assays were adopted to predict and verify the relationships between genes. Counting Kit-8 Assay, clone formation assay, wound-healing assay, transwell assays, cell cycle assays, and in vivo tumorigenesis were used to evaluate cell function. Results: hsa_circ_0000073 was highly expressed in OS cell lines and could promote OS progression, including proliferation, migration, invasion, and cell cycle in vitro as well as tumorigenesis in vivo. Mechanically, hsa_circ_0000073 could readily downregulate the expression of CCNE2 and MDM2 through miR-1252-5p. Rescue experiments validated miR-1252-5p mimics, or CCNE2/MDM2 short hairpin RNA could reverse the hsa_circ_0000073 overexpressing-induced impairment of malignant tumor behavior. Conclusion: hsa_circ_0000073 functions as a tumor promoter in OS to increase malignant tumor behavior through sponging miR-1252-5p and regulating CCNE2 and MDM2 expression, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Zhijing Ren
- Medical College of Guizhou University, Guiyang, China.,Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qinqin Yang
- Medical College of Guizhou University, Guiyang, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhen Yang
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaobin Tian
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
He Q, Tao L, Xu H, Xie X, Cheng S. Circ_0072995 Promotes Proliferation and Invasion via Regulating miR-1253/EIF4A3 Signaling in HCC. Cancer Manag Res 2021; 13:5981-5987. [PMID: 34377018 PMCID: PMC8349228 DOI: 10.2147/cmar.s316559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major threat for human health. This work aimed to determine the potential function of circ_0072995 in HCC progression and its molecular mechanism. Methods qRT-PCR was conducted to analyze circ_0072995 expression. CCK8 and colony formation assays were utilized to detect cell proliferation. Transwell assay was performed to determine migration and invasion. Interactions among circ_0072995, miR-1253 and EIF4A3 (Eukaryotic Translation Initiation Factor 4A3) were predicted through bioinformatics methods and confirmed via luciferase reporter assay and RNA pulldown assay. Results circ_0072995 expression was upregulated in HCC tissues. Circ_0072995 high level was associated with poor prognosis. Circ_0072995 knockdown impaired proliferation, migration, invasion and survival. MiR-1253 was sponged by circ_0072995 and targeted EIF4A3 directly. Circ_0072995 inhibited miR-1253 to upregulate EIF4A3 level. Conclusion Circ_0072995 exerted tumorigenic roles to enhance HCC progression through activating EIF4A3 by sponging miR-1253.
Collapse
Affiliation(s)
- Qianggui He
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Lijun Tao
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongbo Xu
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xianhai Xie
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shuibing Cheng
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
12
|
Wang Z, Chen Y, Wang W, Wang H, Liu R. circMYC promotes cell proliferation, metastasis, and glycolysis in cervical cancer by up-regulating MET and sponging miR-577. Am J Transl Res 2021; 13:6043-6054. [PMID: 34306343 PMCID: PMC8290748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyze the role of circMYC in cervical cancer. METHODS Protein and RNA expression was detected by RT-qPCR and western blotting. Transwell, CCK8, and colony formation assays were used for measuring metastasis, cell viability, and proliferation, respectively. Lactate production, glucose uptake, and ATP generation were examined to evaluate cell glycolysis. Interactions between circMYC, miR-577, and MET were determined by RNA pull-down and immunoprecipitation, and dual-luciferase reporter assays. Xenografts were established in mice to evaluate the functions of circMYC in vivo. RESULTS circMYC was overexpressed in tumor tissue, which was related to poor prognosis. CircMYC knockdown reduced proliferation, colony formation, metastasis, and glycolysis in cervical cancer cells as well as inhibiting tumor growth in vivo. Mechanistically, circMYC targeted miR-577, and the effects of circMYC knockdown could be reversed by miR-577 inhibition. Moreover, miR-577 downregulated the expression of MET. Therefore, the oncogenic role of circMYC in cervical cancer was achieved by sponging miR-577 and maintaining MET expression. CONCLUSION circMYC promotes cervical cancer progression through regulation of the miR-577/MET axis. circMYC may thus be a potential target for diagnosing and treating cervical cancer.
Collapse
Affiliation(s)
- Zhizhen Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and TherapyTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Yang Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and TherapyTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Wei Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and TherapyTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hui Wang
- Department of Radiology, Tianjin Third Central HospitalTianjin, China
| | - Ransheng Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and TherapyTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
| |
Collapse
|
13
|
Li M, Zhuang J, Kang D, Chen Y, Song W. Identification of circRNA circ-CSPP1 as a potent driver of colorectal cancer by directly targeting the miR-431/LASP1 axis. Open Life Sci 2021; 16:523-536. [PMID: 34124372 PMCID: PMC8165258 DOI: 10.1515/biol-2021-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.
Collapse
Affiliation(s)
- Minghao Li
- Department of Gastrointestinal Anorectal Surgery, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Jianbin Zhuang
- Department of Gastrointestinal Anorectal Surgery, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Di Kang
- Department of Gastrointestinal Anorectal Surgery, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Yuzhuo Chen
- Department of Gastrointestinal Anorectal Surgery, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Weiliang Song
- Department of Gastrointestinal Anorectal Surgery, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| |
Collapse
|
14
|
Lu HP, Du XF, Li JD, Huang SN, He RQ, Wu HY, Li MF, Wu WZ, Chen JT, Mo WJ, Chen G. Expression of Cell Division Cycle Protein 45 in Tissue Microarrays and the CDC45 Gene by Bioinformatics Analysis in Human Hepatocellular Carcinoma and Patient Outcomes. Med Sci Monit 2021; 27:e928800. [PMID: 33622998 PMCID: PMC7919231 DOI: 10.12659/msm.928800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) causes a heavy disease burden worldwide. Cell division cycle 45 (Cdc45) and its encoding gene (CDC45) have been studied for a long time, but their expression patterns and roles in liver carcinogenesis and advanced HCC deterioration are still incompletely understood. This study integrated tissue microarray and bioinformatics analyses to explore the expression and clinical value of CDC45 and Cdc45 in HCC. Material/Methods In HCC, the expression and relationships with clinic-pathological parameters of CDC45 and Cdc45 were investigated by integrating the RNA-sequencing data, downloaded from The Cancer Genome Atlas and Oncomine databases, and tissue microarray with immunohistochemistry staining. Co-expressed genes and genetic alterations of CDC45 separately obtained from Oncomine and cBioPortal databases were identified to shed light on the potential mechanisms of CDC45 in HCC. Results CDC45 and Cdc45 were both overexpressed in HCC tissues, and the CDC45 level progressively increased from stage I to III. The survival outcomes of the group with high CDC45 expression were significantly worse compared with the group with low expression. Amplification and deep deletion were 2 major significant alteration types in HCC patients, and the outcomes were worse in patients with altered versus unaltered CDC45. NUDT1, E2F1, CCNE2, MCM5, and CENPM were identified as the most significantly co-expressed genes. Conclusions CDC45 and Cdc45 were both upregulated in HCC, and increased expression levels and genetic alternations of CDC45 were correlated with worse prognosis in HCC patients. CDC45 may promote HCC by co-expressing with NUDT1, E2F1, CCNE2, MCM5, and CENPM.
Collapse
Affiliation(s)
- Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiu-Fang Du
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ming-Fen Li
- Laboratory Department, The First Affiliated Hospital of The University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Wei-Zi Wu
- Department of Pathology, Lingshan People's Hospital, Qinzhou, Guangxi, China (mainland)
| | - Ji-Tian Chen
- Department of Pathology, Lingshan People's Hospital, Qinzhou, Guangxi, China (mainland)
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
15
|
Ely A, Bloom K, Maepa MB, Arbuthnot P. Recent Update on the Role of Circular RNAs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1-17. [PMID: 33542907 PMCID: PMC7851377 DOI: 10.2147/jhc.s268291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
After being overlooked for decades, circular RNAs (circRNAs) have recently generated considerable interest. circRNAs play a role in a variety of normal and pathological biological processes, including hepatocarcinogenesis. Many circRNAs contribute to hepatocarcinogenesis through sponging of microRNAs (miRs) and disruption of cellular signaling pathways that play a part in control of cell proliferation, metastasis and apoptosis. In most cases, overexpressed circRNAs sequester miRs to cause de-repressed translation of mRNAs that encode oncogenic proteins. Conversely, low expression of circRNAs has also been described in hepatocellular carcinoma (HCC) and is associated with inhibited production of tumor suppressor proteins. Other functions of circRNAs that contribute to hepatocarcinogenesis include translation of truncated proteins and acting as adapters to regulate influence of transcription factors on target gene expression. circRNAs also affect hepatocyte transformation indirectly. For example, the molecules regulate immune surveillance of cancerous cells and influence the liver fibrosis that commonly precedes HCC. Marked over- or under-expression of circRNA expression in HCC, with correlating plasma concentrations, has diagnostic utility and assays of these RNAs are being developed as biomarkers of HCC. Although knowledge in the field has recently surged, the myriad of described effects suggests that not all may be vital to hepatocarcinogenesis. Nevertheless, investigation of the role of circRNAs is providing valuable insights that are likely to contribute to improved management of a serious and highly aggressive cancer.
Collapse
Affiliation(s)
- Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Sun Q, Yu R, Wang C, Yao J, Zhang L. Correction to: Circular RNA circ-CSPP1 regulates CCNE2 to facilitate hepatocellular carcinoma cell growth via sponging miR-577. Cancer Cell Int 2020; 20:293. [PMID: 32669969 PMCID: PMC7341586 DOI: 10.1186/s12935-020-01339-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Qian Sun
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Lu, Erqi District, Zhengzhou, 450052 Henan China
| | - Rui Yu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Lu, Erqi District, Zhengzhou, 450052 Henan China
| | - Chunfeng Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Lu, Erqi District, Zhengzhou, 450052 Henan China
| | - Jianning Yao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Lu, Erqi District, Zhengzhou, 450052 Henan China
| | - Lianfeng Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Lu, Erqi District, Zhengzhou, 450052 Henan China
| |
Collapse
|