1
|
Zheng Z, Li K, Yang Z, Wang X, Shen C, Zhang Y, Lu H, Yin Z, Sha M, Ye J, Zhu L. Transcriptomic analysis reveals molecular characterization and immune landscape of PANoptosis-related genes in atherosclerosis. Inflamm Res 2024; 73:961-978. [PMID: 38587531 DOI: 10.1007/s00011-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease characterized by abnormal lipid deposition in the arteries. Programmed cell death is involved in the inflammatory response of atherosclerosis, but PANoptosis, as a new form of programmed cell death, is still unclear in atherosclerosis. This study explored the key PANoptosis-related genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS We evaluated differentially expressed genes (DEGs) and immune infiltration landscape in atherosclerosis using microarray datasets and bioinformatics analysis. By intersecting PANoptosis-related genes from the GeneCards database with DEGs, we obtained a set of PANoptosis-related genes in atherosclerosis (PANoDEGs). Functional enrichment analysis of PANoDEGs was performed and protein-protein interaction (PPI) network of PANoDEGs was established. The machine learning algorithms were used to identify the key PANoDEGs closely linked to atherosclerosis. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of key PANoDEGs. CIBERSORT was used to analyze the immune infiltration patterns in atherosclerosis, and the Spearman method was used to study the relationship between key PANoDEGs and immune infiltration abundance. The single gene enrichment analysis of key PANoDEGs was investigated by GSEA. The transcription factors and target miRNAs of key PANoDEGs were predicted by Cytoscape and online database, respectively. The expression of key PANoDEGs was validated through animal and cell experiments. RESULTS PANoDEGs in atherosclerosis were significantly enriched in apoptotic process, pyroptosis, necroptosis, cytosolic DNA-sensing pathway, NOD-like receptor signaling pathway, lipid and atherosclerosis. Four key PANoDEGs (ZBP1, SNHG6, DNM1L, and AIM2) were found to be closely related to atherosclerosis. The ROC curve analysis demonstrated that the key PANoDEGs had a strong diagnostic potential in distinguishing atherosclerotic samples from control samples. Immune cell infiltration analysis revealed that the proportion of initial B cells, plasma cells, CD4 memory resting T cells, and M1 macrophages was significantly higher in atherosclerotic tissues compared to normal tissues. Spearman analysis showed that key PANoDEGs showed strong correlations with immune cells such as T cells, macrophages, plasma cells, and mast cells. The regulatory networks of the four key PANoDEGs were established. The expression of key PANoDEGs was verified in further cell and animal experiments. CONCLUSIONS This study evaluated the expression changes of PANoptosis-related genes in atherosclerosis, providing a reference direction for the study of PANoptosis in atherosclerosis and offering potential new avenues for further understanding the pathogenesis and treatment strategies of atherosclerosis.
Collapse
Affiliation(s)
| | - Kaiyuan Li
- Dalian Medical University, Dalian, 116000, China
| | - Zhiyuan Yang
- Dalian Medical University, Dalian, 116000, China
| | - Xiaowen Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubin Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Huimin Lu
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China
| | - Zhifeng Yin
- Jiangsu Hanjiang Biotechnology Co., LTD, Taizhou, 225399, China
| | - Min Sha
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| | - Jun Ye
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| | - Li Zhu
- Dalian Medical University, Dalian, 116000, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225399, China.
| |
Collapse
|
2
|
Scuderi C, Di Bella V, Privitera AP, Giustolisi FM, Barresi V, Condorelli DF. Gain-Type Aneuploidies Influence the Burden of Selective Long Non-Coding Transcripts in Colorectal Cancer. Int J Mol Sci 2024; 25:5538. [PMID: 38791575 PMCID: PMC11122260 DOI: 10.3390/ijms25105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Chromosomal instability is a hallmark of colorectal carcinogenesis and produces an accumulation of different forms of aneuploidies or broad copy number aberrations. Colorectal cancer is characterized by gain-type broad copy number aberrations, specifically in Chr20, Chr8q, Chr13 and Chr7, but their roles and mechanisms in cancer progression are not fully understood. It has been suggested that broad copy number gains might contribute to tumor development through the so-called caricature transcriptomic effect. We intend to investigate the impact of broad copy number gains on long non-coding RNAs' expression in colorectal cancer, given their well-known role in oncogenesis. The influence of such chromosomal aberrations on lncRNAs' transcriptome profile was investigated by SNP and transcriptome arrays in our series of colorectal cancer samples and cell lines. The correlation between aneuploidies and transcriptomic profiles led us to obtain a class of Over-UpT lncRNAs, which are transcripts upregulated in CRC and further overexpressed in colon tumors bearing specific chromosomal aberrations. The identified lncRNAs can contribute to a wide interaction network to establish the cancer driving effect of gain-type aneuploidies.
Collapse
Affiliation(s)
| | | | | | | | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.S.); (V.D.B.); (A.P.P.); (F.M.G.); (D.F.C.)
| | | |
Collapse
|
3
|
Yang J, Yuan Y, Wang L, Deng G, Huang J, Liu Y, Gu W. Suppression of long noncoding RNA SNHG6 alleviates cigarette smoke-induced lung inflammation by modulating NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:2634-2641. [PMID: 38205902 DOI: 10.1002/tox.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Junxia Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Guoping Deng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Jiaru Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Hazan JM, Amador R, Ali-Nasser T, Lahav T, Shotan SR, Steinberg M, Cohen Z, Aran D, Meiri D, Assaraf YG, Guigó R, Bester AC. Integration of transcription regulation and functional genomic data reveals lncRNA SNHG6's role in hematopoietic differentiation and leukemia. J Biomed Sci 2024; 31:27. [PMID: 38419051 PMCID: PMC10900714 DOI: 10.1186/s12929-024-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.
Collapse
Affiliation(s)
- Joshua M Hazan
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Raziel Amador
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Tahleel Ali-Nasser
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Tamar Lahav
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Stav Roni Shotan
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Miryam Steinberg
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Ziv Cohen
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- The Taub Faculty of Computer Science, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dvir Aran
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- The Taub Faculty of Computer Science, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Assaf C Bester
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
5
|
Jurkiewicz M, Szczepaniak A, Zielińska M. Long non-coding RNAs - SNHG6 emerge as potential marker in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189056. [PMID: 38104909 DOI: 10.1016/j.bbcan.2023.189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Colorectal cancer (CRC) ranks among the leading cancers in terms of incidence and mortality in the Western world. Currently, there are no sufficient diagnostic markers that would enable an early diagnosis and efficient therapy. Unfortunately, a significant number of new CRC cases is detected in late stages, with distant metastases, therefore, new therapeutic approaches, which would alleviate the prognosis for advanced stages of CRC, are highly in demand. SNHG6 belongs to the group of long non-coding RNAs, which are a larger entity of RNAs consisting of >200 nucleotides. SNHG6 is expressed mainly in the cell cytoplasm, where it acts as a regulator of numerous processes: modulation of crucial protein hubs; sponging miRNAs and upregulating the expression of their target mRNAs; and interacting with various cellular pathways including TGF-β/Smad and Wnt/β-catenin. SNHG6 is an oncogene, substantially overexpressed in CRC tissues and cancerous cell lines as compared to healthy samples. Its overexpression is associated with higher grade, lymphovascular invasion and tumor size. Taking into consideration the role of SNHG6 in the colorectal tumorigenesis, invasion and metastasis, we summarized its role in CRC and conclude that it could serve as a potential biomarker in CRC diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Michalina Jurkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adrian Szczepaniak
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
7
|
Liu Y, Cheng X, Xi P, Zhang Z, Sun T, Gong B. Bioinformatic analysis highlights SNHG6 as a putative prognostic biomarker for kidney renal papillary cell carcinoma. BMC Urol 2023; 23:54. [PMID: 37004005 PMCID: PMC10067223 DOI: 10.1186/s12894-023-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous malignancy and current systemic therapeutic strategies are difficult to achieve a satisfactory outcome for advanced disease. Meanwhile, there is a lack of effective biomarkers to predict the prognosis of KIRP. METHODS Using TCGA, GTEx, UALCAN, TIMER, TIMER 2.0 and STRING databases, we analyzed the relationship of SNHG6 with KIRP subtypes, tumor-infiltrating immune cells and potential target mRNAs. Based on TCGA data, ROC curves, Kaplan-Meier survival analysis and COX regression analysis were performed to evaluate the diagnostic and prognostic value of SNHG6 in KIRP. Nomogram was used to predict 3- and 5-year disease-specific survival in KIRP patients. In addition, with the help of Genetic ontology and Gene set enrichment analysis, the biological processes and signalling pathways that SNHG6 may be involved in KIRP were initially explored. RESULTS In patients with KIRP, SNHG6 was significantly upregulated and associated with a more aggressive subtype (lymph node involvement, pathological stage IV, CIMP phenotype) and poor prognosis. The ROC curve showed good diagnostic efficacy (AUC value: 0.828) and the C-index of the Nomogram for predicting DSS at 3 and 5 years was 0.920 (0.898-0.941). In the immune microenvironment of KIRP, SNHG6 expression levels were negatively correlated with macrophage abundance and positively correlated with cancer-associated fibroblasts. Furthermore, SNHG6 may promote KIRP progression by regulating the expression of molecules such as AURKB, NDC80, UBE2C, NUF2, PTTG1, CENPH, SPC25, CDCA3, CENPM, BIRC5, TROAP, EZH2. Last, GSEA suggests that SNHG6 may be involved in the regulation of the PPAR signalling pathway and the SLIT/ROBO signalling pathway. CONCLUSIONS Our analysis suggests that a high SNHG6 expression status in KIRP is associated with a poorer prognosis for patients, and also elucidates some potential mechanisms contributing to this poorer outcome. This may provide new insights into the treatment and management of KIRP in the foreseeable future.
Collapse
Affiliation(s)
- Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Zou Q, Du X, Zhou L, Yao D, Dong Y, Jin J. A short peptide encoded by long non-coding RNA small nucleolar RNA host gene 6 promotes cell migration and epithelial-mesenchymal transition by activating transforming growth factor-beta/SMAD signaling pathway in human endometrial cells. J Obstet Gynaecol Res 2023; 49:232-242. [PMID: 36396030 DOI: 10.1111/jog.15476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endometrial dysfunction is closely correlated with the development of multiple severe gynecological disorders including intrauterine adhesion. Accumulating evidence supports that some long non-coding RNAs (lncRNAs) have peptide-coding potential. In this text, the peptide-coding ability of lncRNA SNHG6 was examined. Also, the effects of an SNHG6-encoded peptide on the viability and migration of human endometrial stromal cells (hESCs) and human endometrial epithelial cells (hEECs) and related molecular mechanisms were explored. METHODS The peptide-encoding potential of SNHG6 was predicted by FuncPEP and getorf databases and validated by western blot assay. Cell viability was tested by cell counting kit-8 assay. Cell migratory ability was examined by wound healing and transwell migration assays. Protein levels of genes were measured by western blot assay. RESULTS Prediction analysis suggested that SNHG6 had the potential peptide-coding ability and multiple open-reading frames (ORFs). Western blot validated that SNHG6 ORF#1 and ORF#2 could translate into short peptides. SNHG6 ORF#2 overexpression facilitated cell migration and epithelial-mesenchymal transition (EMT) in hESCs and hEECs, while these effects were abrogated by transforming growth factor-beta (TGF-β)/SMAD signaling inhibitor GW788388. Moreover, GW788388 inhibited the increase of p-SMAD2 and p-SMAD3 levels induced by SNHG6 ORF#2 in hESCs. SNHG6 ORF#2-encoded peptide did not influence endometrial stromal and epithelial cell viability. CONCLUSIONS LncRNA SNHG6 ORF#1 and ORF#2 could translate into small peptides and SNHG6 ORF#2 overexpression promoted cell migration and EMT by activating the TGF-β/SMAD pathway in hESCs and hEECs, suggesting the potential roles of SNHG6-encoded peptides in the development of endometrial stromal and epithelial cells and related gynecological diseases.
Collapse
Affiliation(s)
- Qian Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Xin Du
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Yi Dong
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Jing Jin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| |
Collapse
|
9
|
Balasubramanian R, Vinod PK. Inferring miRNA sponge modules across major neuropsychiatric disorders. Front Mol Neurosci 2022; 15:1009662. [PMID: 36385761 PMCID: PMC9650411 DOI: 10.3389/fnmol.2022.1009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is an emerging field of study. The long non-coding RNAs (lncRNAs) are shown to sponge the microRNAs (miRNAs) from interacting with their target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will provide further insights into biological mechanisms and help identify disease biomarkers. In this study, a large-scale inference of the lncRNA-related miRNA sponge network of pan-neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), was carried out using brain transcriptomic (RNA-Seq) data. The candidate miRNA sponge modules were identified based on the co-expression pattern of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical correlation. miRNA sponge modules are associated with chemical synaptic transmission, nervous system development, metabolism, immune system response, ribosomes, and pathways in cancer. The identified modules showed similar and distinct gene expression patterns depending on the neuropsychiatric condition. The preservation of miRNA sponge modules was shown in the independent brain and blood-transcriptomic datasets of NPDs. We also identified miRNA sponging lncRNAs that may be potential diagnostic biomarkers for NPDs. Our study provides a comprehensive resource on miRNA sponging in NPDs.
Collapse
|
10
|
Khan MI, Ahmad A. LncRNA SNHG6 sponges miR-101 and induces tamoxifen resistance in breast cancer cells through induction of EMT. Front Oncol 2022; 12:1015428. [PMID: 36212408 PMCID: PMC9539827 DOI: 10.3389/fonc.2022.1015428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired resistance is a major clinical challenge for tamoxifen-based therapy. In this study, we focused on lncRNA SNHG6 which plays a role in chemoresistance of cancer cells, but has never been investigated in the context of tamoxifen resistance. We found elevated levels of SNHG6 in tamoxifen-resistant estrogen receptor (ER)-positive MCF-7 cells (MCF7TR), relative to naïve MCF-7 cells, as well as in tamoxifen-resistant T47D cells (T47DTR), relative to naïve T47D cells, which correlated with induced vimentin, ZEB1/2 and decreased e-cadherin, thus implicating a role of EMT in SNHG6-mediated tamoxifen resistance. Downregulation of SNHG6, using specific siRNA, sensitized MCF7TR as well as T47DTR cells to tamoxifen along with markedly reduced proliferation, invasion and anchorage-independent clonogenicity. Further, SNHG6 was found to sponge and inhibit miR-101 as the endogenous expression levels of SNHG6 and miR-101 inversely correlated in paired parental and tamoxifen-resistant cells and, moreover, silencing of SNHG6 in tamoxifen-resistant cells resulted in de-repression of miR-101, along with reversal of EMT. SNHG6 expression also directly correlated with increased stem cells markers Sox2, Oct4 and EZH2. miR-101 levels, manipulated by transfections with pre/anti-miR-101 oligos, directly affected tamoxifen sensitivity of ER-positive cells with pre-miR-101 sensitizing MCF7TR and T47DTR cells to tamoxifen whereas anti-miR-101 inducing resistance of parental MCF-7 and T47D cells to tamoxifen. Further, miR-101 was found to attenuate SNHG6-mediated effects on tamoxifen resistance, EMT as well as stem cell markers, thereby making a case for SNHG6-miR-101 axis in tamoxifen resistance of ER-positive breast cancer cells. Thus, lncRNA SNHG6 is a novel modulator of tamoxifen resistance through its sponging of miR-101 and the resulting effects on EMT.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Aamir Ahmad,
| |
Collapse
|
11
|
Hu Y, Guo J, Jang H, Liu A, Ma L, Ren D, Wang F. Long Non-Coding RNA T Cell Leukemia/Lymphoma 6 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Down-Regulating miR-665. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer (BC), which is most commonly seen in women, has become the second most common cause of cancer death in the United States. The number of women dying from BC is increasing every year, especially in the developing countries that fall behind in terms of economy and technologies.
Therefore, it is of great necessity to find potential targets to effectively treat this disease. In this study, RT-qPCR was performed to detect the expressions of TCL6, miR-665, and CD82. CCK-8 and immunofluorescence assays were conducted for the assessment of BC cell proliferation. The invasion
and migration of BC cells were detected by transwell and wound healing assays, respectively. Luciferase reporter assay was used to verify the combination of TCL6 and miR-665, and the binding of miR-665 and CD82. Moreover, the proliferation and migration of related proteins were measured by
western blot. The results showed that TCL6 was low expressed in BC cells, but overexpression of TCL6 inhibited the proliferation, migration, and invasion of BC cells. On the contrary, miR-665 was highly expressed in BC cells, while its expression was negatively correlated with TCL6 as suggested
by RT-qPCR assay. Furthermore, the inhibitory effects of TCL6 overexpression on the proliferation, migration, and invasion of BC cells were reversed by miR-665 mimic. Afterwards, the binding sites between miR-665 and CD82 were verified by luciferase reporter assay. Overexpression of TCL6 increased
the level of CD82 in BC cells, but this effect was reversed by miR-665 mimic as well. In conclusion, the present study has presented the fact that TCL6 could enhance the expression of CD82 by down-regulating the expression of miR-665.
Collapse
Affiliation(s)
- Yaofeng Hu
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Jing Guo
- The Second Group of Geriatrics Department, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Hongnan Jang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Ailan Liu
- Clinical Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Lijun Ma
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan Shanxi 030032, China
| | - Dongliang Ren
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Fusheng Wang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| |
Collapse
|
12
|
Cheng Z, Zhang Y, Zhao R, Zhou Y, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Chang Q, Chu M. A novel circRNA-SNP may increase susceptibility to silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113855. [PMID: 35835075 DOI: 10.1016/j.ecoenv.2022.113855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, we aimed to reveal the association between circRNA-related single nucleotide polymorphisms (SNPs) with the susceptibility of silicosis. To achieve this goal, a silicosis-related GWAS was constructed to select the candidate SNPs, and circBase database was utilized to select the promising SNPs which may locate on circRNAs. In addition, the eQTL analysis between the SNPs and located genes was performed to select the candidate SNPs. Finally, the association between candidate SNPs with the susceptibility of silicosis was validated. As a result, we firstly selected 10,922 SNPs with P < 1 × 10-3 through the silicosis-related GWAS. Among which, 1,752 SNPs were identified that may locate on 2,660 circRNAs. After the MAF evaluation and the sequences checking, we obtained 94 SNPs and related 105 circRNAs. EQTL analysis indicated that 7 circRNA-SNPs might regulate the expression of located genes. Subsequently, a strong association was found between variant A of rs17115143 and silicosis risk in the validation stage (OR= 1.68, P = 0.032). Combination of the GWAS data and Taqman genotyping data also revealed a strong association between rs17115143 and silicosis risk in both dominant and additive models (dom: OR= 1.96, P = 3.98 × 10-4; add: OR= 1.40, P = 3.06 × 10-4). In conclusion, the variant A allele of circRNA-SNP rs17115143 could be a risk factor in the progression of silicosis. And related 6 circRNAs may function as novel biomarkers for the diagnostic of silicosis. Further researches to explore the biological mechanisms of rs17115143 related 6 circRNAs in the regulation of silicosis are warranted.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China; Department of Scientific Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Rui Zhao
- Department of Respiratory, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qing Chang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Tokura M, Nakayama J, Prieto-Vila M, Shiino S, Yoshida M, Yamamoto T, Watanabe N, Takayama S, Suzuki Y, Okamoto K, Ochiya T, Kohno T, Yatabe Y, Suto A, Yamamoto Y. Single-Cell Transcriptome Profiling Reveals Intratumoral Heterogeneity and Molecular Features of Ductal Carcinoma In Situ. Cancer Res 2022; 82:3236-3248. [DOI: 10.1158/0008-5472.can-22-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Ductal carcinoma in situ (DCIS) is a precursor to invasive breast cancer. The frequency of DCIS is increasing because of routine mammography; however, the biological features and intratumoral heterogeneity of DCIS remain obscure. To address this deficiency, we performed single-cell transcriptomic profiling of DCIS and invasive ductal carcinoma (IDC). DCIS was found to be composed of several transcriptionally distinct subpopulations of cancer cells with specific functions. Several transcripts, including long noncoding RNAs, were highly expressed in IDC compared to DCIS and might be related to the invasive phenotype. Closeness centrality analysis revealed extensive heterogeneity in DCIS, and the prediction model for cell-to-cell interactions implied that the interaction network among luminal cells and immune cells in DCIS was comparable to that in IDC. Additionally, transcriptomic profiling of HER2+ luminal DCIS indicated HER2 genomic amplification at the DCIS stage. These data provide novel insight into the intratumoral heterogeneity and molecular features of DCIS, which exhibit properties similar to IDC.
Collapse
Affiliation(s)
- Momoko Tokura
- National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Nakayama
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marta Prieto-Vila
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Sho Shiino
- National Cancer Center Hospital, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | - Koji Okamoto
- National Cancer Center Research Institute, Tokyo, Japan
| | | | - Takashi Kohno
- National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Zhang Y, He R, Lei X, Mao L, Yin Z, Zhong X, Cao W, Zheng Q, Li D. Comprehensive Analysis of a Ferroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Landscape in Osteosarcoma. Front Oncol 2022; 12:880459. [PMID: 35837104 PMCID: PMC9273977 DOI: 10.3389/fonc.2022.880459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Research on the implications of ferroptosis in tumors has increased rapidly in the last decades. There are evidences that ferroptosis is involved in several aspects of cancer biology, including tumor progression, metastasis, immunomodulation, and therapeutic response. Nonetheless, the interaction between ferroptosis-related lncRNAs (FRLs) and the osteosarcoma immune microenvironment is poorly understood. In this study, a risk model composed of FRLs was developed using univariate and LASSO Cox regression analyses. On the basis of this model, FRL scores were calculated to systematically explore the role of the model in predicting the prognosis and immune characteristics of osteosarcoma patients. Survival analysis showed that osteosarcoma samples with lower FRL-score had better overall survival. After predicting the abundance of immune cells in osteosarcoma microenvironment by single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE analysis, we found that the FRL-score could distinguish immune function, immune score, stromal score, tumor purity, and tumor infiltration of immune cells in different osteosarcoma patients. In addition, FRL-score was also associated with immune checkpoint gene expression and half-maximal inhibitory concentration of chemotherapeutic agents. Finally, we confirmed that knockdown of RPARP-AS1 suppressed the malignant activity of osteosarcoma cells in vitro experiments. In general, the FRL-based prognostic signature could promote our understanding of the immune microenvironment characteristics of osteosarcoma and guide more effective treatment regimens.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| |
Collapse
|
15
|
Ma L, Gao J, Zhang N, Wang J, Xu T, Lei T, Zou X, Wei C, Wang Z. Long noncoding RNA SNHG17: a novel molecule in human cancers. Cancer Cell Int 2022; 22:104. [PMID: 35248073 PMCID: PMC8897953 DOI: 10.1186/s12935-022-02529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
AbstractMany studies in recent years have found that dysregulation of long non-coding RNAs (lncRNAs) can contribute to disease. Small nucleolar RNA host gene 17 (SNHG17) is a novel cancer-related lncRNA of the SNHG family which is highly expressed in various tumors and may exert oncogenic functions. Several studies have demonstrated that SNHG17 is closely related to the proliferation, migration, invasion, apoptosis, and chemical drug resistance of tumor cells, and clinical studies have found an association between high SNHG17 expression and poor prognosis. In this review, we summarize relevant studies investigating SNHG17, focusing on its biological function as well as its potential value for clinical applications.
Collapse
|
16
|
Jafari-Oliayi A, Dabiri S. SNHG6 203 RNA May be Involved in the Cell Cycle Progression in HER2-Negative Breast Cancer Cells. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:251-260. [PMID: 36247503 PMCID: PMC9508537 DOI: 10.30699/ijp.2022.525346.2607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
Background & Objective Long noncoding RNAs (lncRNAs) as challenging molecules are more known than those in the last decade. These transcripts have been validated for carcinogenesis in many types of tissue. Functions of lncRNAs in cancer induction include cell cycle, epithelial to mesenchymal transition progression, apoptosis inhibition, cell migration, and invasion stimulation. LncRNA small nucleolar host gene 6 (SNHG6) have been proven as an oncogenic transcript in many types of cancer. Methods RNA extraction was performed for 47 breast specimens in patients with cancer and cDNAs were synthesized. Relative expression of target variants was determined by qPCR and calculated based on the ΔΔCt method. SNHG6 203 was cloned into pcDNA 3.1+ vector for overexpression in MCF7 (HER2-) and SK-BR3 (HER2+) cells. The cell cycle progression of transfected cells was assessed by flow cytometry. Cell migration ability of transfected cells was evaluated by the scratch method and Image J software. Finally, cell viability was assessed by the MTT method. Results Among four splice variants of SNHG6 (202, 203, 204, and 207), SNHG6 203 was proved as an overexpressed splice variant in breast tumors. This transcript was expressed in HER2-negative breast tumors more frequently than in the positive ones. Overexpression of this variant in target cells resulted in cell cycle progression of MCF7 as HER2-negative cells. Moreover, the overexpression of SNHG6 203 led to lower migration ability of MCF7 cells and a non-significant reduction of their viability as HER2-negative breast cancer cells. Conclusion Our results revealed that SNHG6 203 may be involved in the carcinogenesis of HER2-negative breast cancers via cell cycle progression.
Collapse
Affiliation(s)
- Amin Jafari-Oliayi
- Corresponding Information: Amin Jafari-Oliayi, Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
17
|
Sun Z, Hu J, Hu K, Tang M, Sun S, Fang Y, Yu H, Zhang Y. [Role of long noncoding RNA SNHG3 in regulating proliferation, migration and invasion of cervical cancer SiHa cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:931-936. [PMID: 34238747 DOI: 10.12122/j.issn.1673-4254.2021.06.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the regulatory role of the long non-coding RNA (lncRNA) small nucleolar host gene 3 (SNHG3) in proliferation, migration and invasion of human cervical cancer cell line SiHa. OBJECTIVE Array data were retrieved from GEO database to analyze the expression levels of SNHG3 in cervical cancer and adjacent normal tissues. SiHa cells were transfected with a small interfering RNA (siRNA) targeting SNHG3, and the changes in the transcriptional levels of lncRNA SNHG3 and the epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail, vimentin and E-cadherin were detected using real-time quantitative PCR; the protein expressions of N-cadherin, Snail, vimentin and E-cadherin were determined using Western blotting. Cell counting kit-8 (CCK8) assay was utilized to assess the proliferation capacity of the transfected cells. Wound healing assay and Transwell assay were performed to evaluate the transversal and longitudinal migration and invasion abilities of the cells. OBJECTIVE SNHG3 was over-expressed in cervical cancer tissues and SiHa cells. In SiHa cells, knocking down SNHG3 significantly inhibited the proliferation (P < 0.001), migration (P < 0.01) and invasion abilities (P < 0.001) of the cells, down-regulated the expression levels of N-cadherin, Snail and vimentin (P < 0.001) and up-regulated the expression of E-cadherin (P < 0.001). OBJECTIVE SNHG3 may promote the proliferation, migration and invasion of SiHa cells by activating the EMT signaling pathway.
Collapse
Affiliation(s)
- Z Sun
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - J Hu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - K Hu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - M Tang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - S Sun
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Y Fang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - H Yu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Y Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Wang YQ, Huang G, Chen J, Cao H, Xu WT. LncRNA SNHG6 promotes breast cancer progression and epithelial-mesenchymal transition via miR-543/LAMC1 axis. Breast Cancer Res Treat 2021; 188:1-14. [PMID: 33782812 DOI: 10.1007/s10549-021-06190-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Breast cancer (BC) is the most prevalent cancer in women with an estimated incidence of 10% and the leading cause of mortality due to its heterogenous property and high metastasis rate. Development of novel therapy is very necessary and requires an understanding of molecular mechanisms. We investigated the function of SNHG6/miR-543/LAMC1 axis in BC. METHODS Human BC tissues were obtained from diagnosed patients. BC cell lines and normal breast cells were used. QRT-PCR and Western blotting were employed to measure expression levels of SNHG6, miR-543, LAMC1, EMT-related proteins, and PI3K/AKT pathway. Dual-luciferase assay was performed to validate interactions of SNHG6/miR-543 and miR-543/LAMC1. Colony formation assay, flow cytometry, scratch wound healing assay, and transwell assay were utilized to assess the proliferation, apoptosis, migration, and invasion of BC cells. Nude mouse xenograft model was used the evaluate the function of SNHG6/miR-543 in tumor growth in vivo. RESULTS SNHG6 and LAMC1 were elevated, but miR-543 was reduced in BC tissues and cells. SNHG6 interacted directly with miR-543, while miR-543 targeted LAMC1. Knockdown of SNHG6 suppressed BC cell proliferation, migration, invasion, EMT, and PI3K/AKT pathway, but promoted cell apoptosis, while miR-543 inhibitor or overexpression of LAMC1 reversed those effects. Overexpression of LAMC1 also blocked the effects of miR-543 on BC cell proliferation, migration, invasion, and EMT. Knockdown of SNHG6 restrained BC growth in vivo, while miR-543 inhibitor inhibited that suppression. CONCLUSION SNHG6 promoted EMT and BC cell proliferation and migration by acting as a miR-543 sponge and disinhibiting LAMC1/PI3K/AKT pathway. SNHG6/miR-543/LAMC1 axis could serve as candidates for the development of therapeutic strategies for BC.
Collapse
Affiliation(s)
- You-Quan Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of University of South China, No. 35 Jiefang Avenue, Fengxiang District, Hengyang, 421001, Hunan province, China.
| | - Guo Huang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan province, China
| | - Juan Chen
- Department of Radiotherapy, The Second Affiliated Hospital of University of South China, Hengyang, 421001, Hunan province, China
| | - Hong Cao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of University of South China, No. 35 Jiefang Avenue, Fengxiang District, Hengyang, 421001, Hunan province, China
| | - Wen-Ting Xu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of University of South China, No. 35 Jiefang Avenue, Fengxiang District, Hengyang, 421001, Hunan province, China
| |
Collapse
|
19
|
Lang Z, Fan X, Lin H, Qiu L, Zhang J, Gao C. Silencing of SNHG6 alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by modulating miR-135a-5p/HIF1AN to activate Shh/Gli1 signalling pathway. J Pharm Pharmacol 2021; 73:22-31. [PMID: 33791813 DOI: 10.1093/jpp/rgaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To examine the effects of small nucleolar RNA host gene 6 (SNHG6) on apoptosis during myocardial ischemic/reperfusion (I/R) injury and its potential molecular mechanisms. METHODS In vitro model of I/R was built through exposing mouse HL-1 cardiomyocytes to hypoxia/reoxygenation (H/R) treatment. Quantitative real-time polymerase chain reaction assays were performed to determine gene expression. Cell Counting Kit-8, flow cytometric and western blot assays were conducted to detect cell viability, apoptosis and protein expression. Lactate dehydrogenase (LDH) activity was examined by a commercial detection kit. Dual-luciferase gene reporter and RNA immunoprecipitation experiments were applied for determining the interaction between the molecules. KEY FINDINGS SNHG6 expression was increased in H/R-challenged cardiomyocytes. Depletion of SNHG6 protected against H/R-induced cardiomyocytes apoptosis. SNHG6 could sponge miR-135a-5p to inhibit its expression. Down-regulation of miR-135a-5p reversed the anti-apoptotic effect caused by SNHG6 knockdown in H/R-induced cardiomyocytes. Hypoxia inducible factor 1 subunit alpha inhibitor (HIF1AN) was identified as a direct target of miR-135a-5p, and knockdown of HIF1AN relieved H/R-induced cardiomyocytes apoptosis. Silencing of SNHG6 activated Shh/Gli1 signalling pathway by regulating miR-135a-5p/HIF1AN. Furthermore, inactivation of Shh/Gli signalling abolished the anti-apoptotic effects of SNHG6 knockdown in H/R-induced cardiomyocytes. CONCLUSIONS SNHG6 serves as a sponge for miR-135a-5p to promote HIF1AN expression and inactivate Shh/Gli1 signalling, eventually aggravating H/R-induced apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Zhibin Lang
- Department of Anesthesiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiaozhen Fan
- Department of Laboratory Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Hongqi Lin
- Department of Anesthesiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Lin Qiu
- Department of Anesthesiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| |
Collapse
|
20
|
Sun JR, Kong CF, Xiao KM, Yang JL, Qu XK, Sun JH. Integrated Analysis of lncRNA-Mediated ceRNA Network Reveals a Prognostic Signature for Hepatocellular Carcinoma. Front Genet 2021; 11:602542. [PMID: 33381151 PMCID: PMC7767998 DOI: 10.3389/fgene.2020.602542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of malignancy and is associated with high mortality. Prior research suggests that long non-coding RNAs (lncRNAs) play a crucial role in the development of HCC. Therefore, it is necessary to identify lncRNA-associated therapeutic biomarkers to improve the accuracy of HCC prognosis. Transcriptomic data of HCC obtained from The Cancer Genome Atlas (TCGA) database were used in the present study. Differentially expressed RNAs (DERNAs), including 74 lncRNAs, 16 miRNAs, and 35 mRNAs, were identified using bioinformatics analysis. The DERNAs were subsequently used to reconstruct a competing endogenous RNA (ceRNA) network. A lncRNA signature was revealed using Cox regression analysis, including LINC00200, MIR137HG, LINC00462, AP002478.1, and HTR2A-AS1. Kaplan-Meier plot demonstrated that the lncRNA signature is highly accurate in discriminating high- and low-risk patients (P < 0.05). The area under curve (AUC) value exceeded 0.7 in both training and validation cohort, suggesting a high prognostic potential of the signature. Furthermore, multivariate Cox regression analysis indicated that both the TNM stage and the lncRNA signature could serve as independent prognostic factors for HCC (P < 0.05). Then, a nomogram comprising the TNM stage and the lncRNA signature was determined to raise the accuracy in predicting the survival of HCC patients. In the present study, we have introduced a ceRNA network that could contribute to provide a new insight into the identification of potential regulation mechanisms for the development of HCC. The five-lncRNA signature could serve as a reliable biosignature for HCC prognosis, while the nomogram possesses strong potential in clinical applications.
Collapse
Affiliation(s)
- Jian-Rong Sun
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen-Fan Kong
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun-Min Xiao
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lu Yang
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ke Qu
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Hui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|