1
|
Mu Y, Liu H, Luo A, Zhang Q. KIFC3 promotes the progression of non-small cell lung cancer cells through the PI3K/Akt pathway. Thorac Cancer 2024. [PMID: 39390964 DOI: 10.1111/1759-7714.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Kinesin family member C3 (KIFC3), as reported, plays important roles in several tumor types. Nevertheless, it is unknown whether KIFC3 has effects on non-small cell lung cancer (NSCLC) development. MATERIALS AND METHODS KIFC3 expression was detected by RT-PCR, and its correlation with prognosis was analyzed by GEPIA website. Small interfering RNA against KIFC3 were adopted for modulating KIFC3 expression in NSCLC cells. KIFC3 effects on NSCLC cell proliferation were determined using the MTT and clone formation assay. Matrigel invasion and wound healing assays were adopted for measuring the invasion and migration capability of NSCLC cells. Western blot was applied for measuring the levels of proteins associated with the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in NSCLC cells. RESULTS KIFC3 was markedly increased in NSCLC samples and cells. KIFC3 knockdown suppressed the proliferation, invasion, and migration in NSCLC. Mechanically, KIFC3 silencing suppressed NSCLC progression through inhibiting the PI3K/Akt pathway. CONCLUSIONS KIFC3 lack suppressed the proliferation, invasion, and migration which works, at least partially, by the PI3K/Akt pathway. These findings suggest that targeting KIFC3 via the PI3K/Akt pathway may offer a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yu Mu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoxiang Liu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Anni Luo
- School of Traditional Chinese Medicine, Texas Health and Science University, Austin, Texas, USA
| | - Qingxiang Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Mathes A, Duman MB, Neumann A, Dobreva G, Schmidt T. S-adenosylmethionine treatment affects histone methylation in prostate cancer cells. Gene 2024; 893:147915. [PMID: 37866662 DOI: 10.1016/j.gene.2023.147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
S-adenosylmethionine (SAM) represents a potent inhibitor of cancer cell proliferation, migration, and invasionin vitro.The underlying mechanisms remain elusive. Here, we examined, if treatment with SAM may cause alterations in the methylation of the histone marks H3K4me3 and H3K27me3, which are both known to play important roles in the initiation and progression of prostate cancer. We treated PC-3 cells with 200 µmol SAM, a concentration known to cause anticancerogenic effects, followed by ChIP-sequencing for H3K4me3 and H3K27me3. We detected 236 differentially methylated regions for H3K27me3 and 560 differentially methylated regions for H3K4me3. GO Term enrichment showed upregulation of anticancerogenic, as well as downregulation of cancerogenic related biological processes, molecular functions, and pathways. Furthermore, we compared specific methylation profiles of SAM treated samples to gene expression changes (RNA-Seq). 35 upregulated and 56 downregulated genes (total: 604 differentially expressed genes) could be related to hypomethylated and hypermethylated regions. 17 upregulated genes could be identified as tumor suppressor genes, 45 downregulated genes in contrast are considered as oncogenes. As a conclusion it can be stated that SAM treatment of prostate cancer cells resulted in alterations of H3K4me3 and H3K27me3 methylation profiles. Gene to peak annotation, alignment with results of a transcriptome study as well as GO-term analysis underpinned the biological relevance of methylation changes.
Collapse
Affiliation(s)
- Arthur Mathes
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Schmidt
- Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Gromova KV, Thies E, Janiesch PC, Lützenkirchen FP, Zhu Y, Stajano D, Dürst CD, Schweizer M, Konietzny A, Mikhaylova M, Gee CE, Kneussel M. The kinesin Kif21b binds myosin Va and mediates changes in actin dynamics underlying homeostatic synaptic downscaling. Cell Rep 2023; 42:112743. [PMID: 37418322 DOI: 10.1016/j.celrep.2023.112743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
Homeostatic synaptic plasticity adjusts the strength of synapses to restrain neuronal activity within a physiological range. Postsynaptic guanylate kinase-associated protein (GKAP) controls the bidirectional synaptic scaling of AMPA receptors (AMPARs); however, mechanisms by which chronic activity triggers cytoskeletal remodeling to downscale synaptic transmission are barely understood. Here, we report that the microtubule-dependent kinesin motor Kif21b binds GKAP and likewise is located in dendritic spines in a myosin Va- and neuronal-activity-dependent manner. Kif21b depletion unexpectedly alters actin dynamics in spines, and adaptation of actin turnover following chronic activity is lost in Kif21b-knockout neurons. Consistent with a role of the kinesin in regulating actin dynamics, Kif21b overexpression promotes actin polymerization. Moreover, Kif21b controls GKAP removal from spines and the decrease of GluA2-containing AMPARs from the neuronal surface, thereby inducing homeostatic synaptic downscaling. Our data highlight a critical role of Kif21b at the synaptic actin cytoskeleton underlying homeostatic scaling of neuronal firing.
Collapse
Affiliation(s)
- Kira V Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Edda Thies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philipp C Janiesch
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Felix P Lützenkirchen
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yipeng Zhu
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Daniele Stajano
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Céline D Dürst
- Department of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michaela Schweizer
- Core Facility Morphology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anja Konietzny
- RG Neuronal Protein Transport, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marina Mikhaylova
- RG Neuronal Protein Transport, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, 10099 Berlin, Germany
| | - Christine E Gee
- Department of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Hamburg Center of Neuroscience, HCNS, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
4
|
Qiao S, Jiang Y, Li N, Zhu X. The kinesin light chain-2, a target of mRNA stabilizing protein HuR, inhibits p53 protein phosphorylation to promote radioresistance in NSCLC. Thorac Cancer 2023. [PMID: 37055376 DOI: 10.1111/1759-7714.14886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Radioresistance hinders radiotherapy for the treatment of lung cancer. Kinesin light chain-2 (KLC2) has been found to be upregulated in lung cancer and also to be associated with poor prognosis. This study aimed to investigate the effect of KLC2 on radiosensitivity in lung cancer. METHODS The radioresistant role of KLC2 was determined by colony formation, neutral comet assay, and γH2AX immunofluorescent staining assay. We further verified the function of KLC2 in a xenograft tumor model. The downstream of KLC2 was identified through gene set enrichment analysis and validated by western blot. Finally, we analyzed clinical data from the TCGA database to reveal the upstream transcription factor of KLC2, which was validated by RNA binding protein immunoprecipitation assay. RESULTS Here, we found that downregulation of KLC2 could significantly reduce colony formation, increase γH2AX level, and double-stranded DNA breaks in vitro. Meanwhile, overexpressed KLC2 significantly increased the proportion of the S phase in lung cancer cells. KLC2 knockdown could activate P53 pathway, and ultimately promoting radiosensitivity. The mRNA of KLC2 was observed to bind with Hu-antigen R (HuR). The mRNA and protein expression of KLC2 in lung cancer cells was significantly reduced when combined with siRNA-HuR. Interestingly, KLC2 overexpression significantly increased the expression of HuR in lung cancer cells. CONCLUSION Taken together, these results indicated that HuR-KLC2 forms a positive feedback loop, which decreases the phosphorylation of p53 and thereby weaken the radiosensitivity of lung cancer cells. Our findings highlight the potential prognosis and therapeutic target value of KLC2 in lung cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhang Jiang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Hassan Ibrahim I, Balah A, Gomaa Abd Elfattah Hassan A, Gamal Abd El-Aziz H. Role of motor proteins in human cancers. Saudi J Biol Sci 2022; 29:103436. [PMID: 36131778 PMCID: PMC9483653 DOI: 10.1016/j.sjbs.2022.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Motor proteins include several protein families (Kinesin, Dynein and Myosin) responsible for intracellular transport, intercellular communication, among other functions. In cancer cells, motor proteins along with microtubules (MT) and other tubulin and actin structures, are crucial for cell proliferation and invasion. The cBioPortal platform for Cancer Genomics database was queried for solid cancers in a combined cohort of 9204 patients with complete cancer genomics data. To assess the importance of motor proteins in cancer, copy number alterations (CNAs) and survival rates were analyzed in the combined dataset. Kinesin, Dynein, and Myosin families showed CNAs in 47%, 49%, and 57 % of patients, respectively, in at least one of their members. Survival analysis showed that CNAs in Kinesin and Dynein, families' genes in the same patients were significantly correlated to decreased overall survival. These results added more evidence to previous literature highlighting the importance of motor proteins as a target in cancer therapy. Kinesin inhibitors could act by several mechanisms such as inhibiting spindle assembly or centrosome separation during mitosis, leading to cell cycle arrest and eventually apoptosis. Dynein inhibitors modulate Dynein's activity and MT binding, inhibiting cell proliferation and invasion. Myosin inhibitors act by stabilizing MT, inducing cell cycle arrest and inhibiting invasiveness. Increasing the specificity of motor proteins targeting drugs could improve cancer therapy and patient survival.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Amany Balah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al- Azhar University, Postal code 11765, Egypt
| | - Abrar Gomaa Abd Elfattah Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Heba Gamal Abd El-Aziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| |
Collapse
|
6
|
Qian C, Jiang Z, Zhou T, Wu T, Zhang Y, Huang J, Ouyang J, Dong Z, Wu G, Cao J. Vesicle-mediated transport-related genes are prognostic predictors and are associated with tumor immunity in lung adenocarcinoma. Front Immunol 2022; 13:1034992. [PMID: 36524130 PMCID: PMC9745133 DOI: 10.3389/fimmu.2022.1034992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Globally, lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths. It is a progressive disorder that arises from multiple genetic and environmental factors. Dysregulated expression of vesicle-mediated transport-related genes (VMTRGs) have been reported in several cancers. However, the prognostic significance of VMTRGs in LUAD has yet to be established. Methods The VMTRG profiling data for 482 LUAD patients and 59 normal controls were downloaded from The Cancer Genome Altas (TCGA). Univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct and optimize the risk model. Several GEO datasets were used to validate the risk model. The roles of these genes were investigated via the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses. Differences in immune cell infiltrations between risk groups were evaluated using five algorithms. "pRRophetic" was used to investigate anti-cancer drug sensitivities in two groups. Expression of these five genes in LUAD samples and adjacent normal tissues were evaluated by qRT-PCR. Colony formation and wound healing assays were performed to assess the significance of CNIH1 and AP3S1 in LUAD cells. Results We identified 85 prognosis-associated VMTRGs that could be constructed a risk model for LUAD patients, indicating their potential importance in LUAD development. The risk model including the five VMTRGs (CNIH1, KIF20A, GALNT2, GRIA1, and AP3S1) was associated with clinical outcomes. Tumor stage and risk score were found to be independent prognostic factors for LUAD patients. The five VMTRGs were also correlated with activation of the Notch and p53 signaling pathways. The risk model was significantly associated with immune responses and with high-level expression of immune checkpoints. High-risk group patients were more sensitive to several chemotherapeutic drugs and Lapatinib. Furthermore, CNIH1 and AP3S1 promoted LUAD cell growth and migration in vitro. Conclusion We constructed a VMTRG-based risk model for effective prediction of prognostic outcomes for LUAD patients. The risk model was associated with immune infiltration levels. These five hub genes are potential targets for immune therapy combined with chemotherapy in LUAD.
Collapse
Affiliation(s)
- Changrui Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zewei Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ju Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinglin Ouyang
- Department of Ultrasound Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhixiong Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| |
Collapse
|
7
|
Xu S, Li Y, Huang H, Miao X, Gu Y. Identification of KIF21B as a Biomarker for Colorectal Cancer and Associated with Poor Prognosis. JOURNAL OF ONCOLOGY 2022; 2022:7905787. [PMID: 36451772 PMCID: PMC9705103 DOI: 10.1155/2022/7905787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This study is aimed at exploring the function of KIF21B in colorectal cancer. METHODS The expression of KIF21B was analyzed by the UALCAN database, GEPIA site, and TIMER site. The survival rate was analyzed by Kaplan-Meier curves, and the prognosis was analyzed by ROC. Relevant signaling pathways and biological processes were analyzed by GO-KEGG enrichment analysis. The correlation between KIF21B and cancer immune infiltrates was analyzed by TIMER. The functional state of KIF21B in various types of cancers was conducted by single-cell RNA-sequencing. Furthermore, the expression of KIF21B was verified by real-time qPCR and Western blotting. The cell proliferation was measured by CCK8 assay. The cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were determined by the transwell assay. RESULTS Combination analysis of bioinformatics methods revealed that KIF21B is high expression in CRC, associated with poor survival. KIF21B and associated genes were significantly enriched in covalent chromatin modification. The expression of KIF21B was positively correlated with infiltrating levels of CD4+ T cells and neutrophils, cell apoptosis, and metastasis. KIF21B was upregulated expression in CRC cell lines. KIF21B deficiency reduced cell proliferation, migration, and invasion. CONCLUSIONS Our study suggested that KIF21B may be a biomarker in CRC.
Collapse
Affiliation(s)
- Shanshan Xu
- Major of Chinese Medicine Surgery, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, China
| | - Youran Li
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, China
| | - Hua Huang
- Department of Anorectal, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 215500, China
| | - Xian Miao
- Department of Oncology, Nantong Hospital of Traditional Chinese, Nantong, Jiangsu 226001, China
| | - Yunfei Gu
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, China
| |
Collapse
|
8
|
Duan W, Wang Z, Qian W, Qi D, Ma Q, Wu E. Editorial: The Microenvironment in Pancreatic Cancer and Therapeutic Strategies Targeting Microenvironment. Front Oncol 2022; 12:923982. [PMID: 35814423 PMCID: PMC9260652 DOI: 10.3389/fonc.2022.923982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
- Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, TX, United States
- *Correspondence: Erxi Wu,
| |
Collapse
|
9
|
Liu B, Qiang L, Guan B, Ji Z. Targeting kinesin family member 21B by miR-132-3p represses cell proliferation, migration and invasion in gastric cancer. Bioengineered 2022; 13:9006-9018. [PMID: 35341446 PMCID: PMC9161970 DOI: 10.1080/21655979.2022.2054755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, kinesin family member 21B (KIF21B) has been reported to be an oncogene in non-small cell lung cancer and hepatocellular carcinoma. However, the functional role of KIF21B and related molecular mechanisms in gastric cancer (GC) remain largely uncovered. In this study, online bioinformatics analysis showed that KIF21B was overexpression in GC and predicted poor prognosis. Consistently, we found that the protein expression of KIF21B was upregulated in GC tissues compared with adjacent tissues by immunohistochemistry. Knockdown of KIF21B significantly suppressed cell proliferation, migration and invasion in GC cell lines (AGS and SNU-5) using Cell counting kit‑8 (CCK-8) assay, colony formation and transwell assay. KIF21B was confirmed as the target of miR-132-3p in GC cells by luciferase reporter assay. Moreover, miR-132-3p was down-regulated and KIF21B expression was upregulated in GC tissues. Overexpression of KIF21B reversed the miR-132-3p-mediated suppressive effects on GC cell proliferation, migration and invasion. Furthermore, miR-132-3p overexpression downregulated the protein levels of Wnt1, c-Myc, β-catenin, proliferating cell nuclear antigen (PCNA) and N-cadherin, and upregulated E-cadherin expression in GC cells, which were all alleviated after KIF21B overexpression. In conclusion, our findings indicate that down-regulation of KIF21B by miR-132-3p suppresses cellular functions in GC, which might be linked to reduced Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Bingtian Liu
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Qiang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhipeng Ji
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Mi J, Ma S, Chen W, Kang M, Xu M, Liu C, Li B, Wu F, Liu F, Zhang Y, Wang R, Jiang L. Integrative Pan-Cancer Analysis of KIF15 Reveals Its Diagnosis and Prognosis Value in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:772816. [PMID: 35359374 PMCID: PMC8963360 DOI: 10.3389/fonc.2022.772816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundKIF15 plays a vital role in many biological processes and has been reported to influence the occurrence and development of certain human cancers. However, there are few systematic evaluations on the role of KIF15 in human cancers, and the role of KIF15 in the diagnosis and prognosis of nasopharyngeal carcinoma (NPC) also remains unexplored. Therefore, this study aimed to conduct a pan-cancer analysis of KIF15 and evaluate its diagnostic and prognostic potential in NPC.MethodsThe expression pattern, prognostic value, molecular function, tumor mutation burden, microsatellite instability, and immune cell infiltration of KIF15 were examined based on public databases. Next, the diagnostic value of KIF15 in NPC was analyzed using the Gene Expression Omnibus (GEO) database and immunohistochemistry (IHC). Kaplan–Meier curves, Cox regression analyses, and nomograms were used to evaluate the effects of KIF15 expression on NPC prognosis. Finally, the effect of KIF15 on NPC was explored by in vitro experiments.ResultsThe expression of KIF15 was significantly upregulated in 20 out of 33 cancer types compared to adjacent normal tissue. Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analysis showed that KIF15 could participate in several cancer-related pathways. The increased expression level of KIF15 was correlated with worse clinical outcomes in many types of human cancers. Additionally, KIF15 expression was related to cancer infiltration of immune cells, tumor mutation burden, and microsatellite instability. In the analysis of NPC, KIF15 was significantly upregulated based on the GEO database and immunohistochemistry. A high expression of KIF15 was negatively associated with the prognosis of patients with NPC. A nomogram model integrating clinical characteristics and KIF15 expression was established, and it showed good predictive ability with an area under the curve value of 0.73. KIF15 knockdown significantly inhibited NPC cell proliferation and migration.ConclusionsOur findings revealed the important and functional role of KIF15 as an oncogene in pan-cancer. Moreover, high expression of KIF15 was found in NPC tissues, and was correlated with poor prognosis in NPC. KIF15 may serve as a potential therapeutic target in NPC treatment.
Collapse
Affiliation(s)
- Jinglin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology, Yunfu People’s Hospital, Yunfu, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Fengju Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
- *Correspondence: Li Jiang, ; Rensheng Wang,
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Li Jiang, ; Rensheng Wang,
| |
Collapse
|
11
|
Zhang J, Shen Y, Ma D, Li Z, Zhang Z, Jin W. SLCO4A1-AS1 mediates pancreatic cancer development via miR-4673/KIF21B axis. Open Med (Wars) 2022; 17:253-265. [PMID: 35233463 PMCID: PMC8847713 DOI: 10.1515/med-2022-0418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, we intended to figure out the biological significance of long non-coding RNAs (lncRNAs) solute carrier organic anion transporter family member 4A1 antisense RNA 1 (SLCO4A1-AS1) in pancreatic cancer (PC). Cell counting kit-8, colony formation, wound healing, transwell, and flow cytometry experiments were performed to reveal how SLCO4A1-AS1 influences PC cell proliferation, migration, invasion, and apoptosis. Thereafter, bioinformatics analysis, RNA immunoprecipitation assay, luciferase reporter assay, and RNA pull-down assay were applied for determining the binding sites and binding capacities between SLCO4A1-AS1 and miR-4673 or kinesin family member 21B (KIF21B) and miR-4673. The results depicted that SLCO4A1-AS1 was upregulated in PC, and SLCO4A1-AS1 knockdown suppressed PC cell growth, migration, invasion, and induced cell apoptosis. Furthermore, SLCO4A1-AS1 was verified to modulate the expression of KIF21B by binding with miR-4673. SLCO4A1-AS1 exerted an oncogenic function in PC. The overexpression of SLCO4A1-AS1 aggravated the malignant behaviors of PC via the upregulation of KIF21B by sponging miR-4673. Our findings revealed a novel molecular mechanism mediated by SLCO4A1-AS1, which might play a significant role in modulating the biological processes of PC.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Yanbing Shen
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Dandan Ma
- Department of General Surgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuchang District, Wuhan 430070, Hubei, China
| | - Zhonghu Li
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Zhiyong Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Weidong Jin
- Department of General Surgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuchang District, Wuhan 430070, Hubei, China
| |
Collapse
|
12
|
Yang Y, Gao L, Weng NN, Li JJ, Liu JL, Zhou Y, Liao R, Xiong QL, Xu YF, Varela-Ramirez A, Zhu Q. Identification of Novel Molecular Therapeutic Targets and Their Potential Prognostic Biomarkers Among Kinesin Superfamily of Proteins in Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:708900. [PMID: 34557409 PMCID: PMC8454465 DOI: 10.3389/fonc.2021.708900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Background Kinesin superfamily of proteins (KIFs) has been broadly reported to play an indispensable role in the biological process. Recently, emerging evidence reveals its oncogenic role in various cancers. However, the prognostic, oncological, and immunological values of KIFs have not been comprehensively explored in pancreatic ductal adenocarcinoma (PDAC) patients. We aimed to illustrate the relationship between KIFs and pancreatic ductal adenocarcinoma by using bioinformatical analysis. Methods We use GEPIA, Oncomine datasets, cBioPortal, LOGpc, TIMER, and STRING bioinformatics tools and web servers to investigate the aberrant expression, prognostic values, and oncogenic role of KIFs. The two-gene prognostic model and the correlation between KIFs and KRAS and TP53 mutation were performed using an R-based computational framework. Results Our results demonstrated that KIFC1/2C/4A/11/14/15/18A/18B/20B/23 (we name it prognosis-related KIFs) were upregulated and associated with unfavorable clinical outcome in pancreatic cancer patients. KIF21B overexpression is associated with better clinical outcome. The KIFC1/2C/4A/11/14/15/18A/18B/20B/23 profiles were significantly increased compared to grade 1 and grade 2/3. Besides, KIFC1/2C/4A/11/14/15/18A/18B/20B/23 was significantly associated with the mutation status of KRAS and TP53.Notably, most prognosis-related KIFs have strong correlations with tumor growth and myeloid-derived suppressor cells infiltration (MDSCs). A prognostic signature based on KIF20B and KIF21B showed a reliable predictive performance. Receiver operating characteristic (ROC) curve was employed to assess the predictive power of two-gene signature. Consequently, the gene set enrichment analysis (GSEA) showed that KIF20B and KIF21B’s overexpression was associated with the immunological and oncogenic pathway activation in pancreatic cancer. Finally, real-time quantitative PCR (RT-qPCR) was utilized to investigate the expression pattern of KIF20B and KIF21B in pancreatic cancer cell lines and normal pancreatic cell. Conclusions Knowledge of the expression level of the KIFs may provide novel therapeutic molecular targets and potential prognostic biomarkers to pancreatic cancer patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Lanyang Gao
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Ning-Na Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Jun Li
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Lu Liu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Zhou
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Rong Liao
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Qun-Li Xiong
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong-Feng Xu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Armando Varela-Ramirez
- Department of Biological Sciences, The Border Biomedical Research Center (BBRC), The University of Texas at El Paso, El Paso, TX, United States
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Liu J, Tian Y, Yi L, Gao Z, Lou M, Yuan K. High KIF11 expression is associated with poor outcome of NSCLC. TUMORI JOURNAL 2021; 108:40-46. [PMID: 33554761 DOI: 10.1177/0300891620988342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To clarify the correlation between KIF11 (kinesin family member 11) and clinicopathologic characteristics of non-small cell lung cancer (NSCLC) and identify the prognostic value of KIF11 in patients with NSCLC. METHODS For investigating the expression of KIF11 in NSCLC, two tissue microarrays (TMAs: one contained 60 paired NSCLC tissues and paratumor tissues, the other contained 140 NSCLC tissues and 10 normal lung tissues) were constructed, stained, and scored. The Cancer Genome Atlas (TCGA) datasets were used to explore the differential expression level of KIF11 between NSCLC and paratumor. Kaplan-Meier survival curves were plotted and multivariate analysis were carried out. RESULTS The staining of KIF11 mainly distributed throughout the cytoplasm of tumor cells. Its expression was higher in NSCLC than paratumor cells, and similar results were obtained from TCGA datasets. We found that high expression of KIF11 had a significant correlation with lymph node metastases (p = 0.024) and pathologic stage (p = 0.018); that significant difference was not found in any other clinicopathologic characteristic. As univariate and multivariate analysis showed, KIF11 expression was significantly correlated with overall survival time of NSCLC (p = 0.002, p = 0.025, respectively). High KIF11 expression was found to significantly associate with overall survival of stage II-III (p = 0.001) and lung adenocarcinoma (p = 0.036). CONCLUSION High KIF11 expression predicts poor outcome in NSCLC. KIF11 is expected to be a viable prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Junhui Liu
- School of Medicine, Dalian Medical University, Dalian, China.,Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yubin Tian
- School of Medicine, Dalian Medical University, Dalian, China.,Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Yi
- Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhaojia Gao
- Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.,Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ming Lou
- Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Yuan
- Division of Thoracic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.,Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
14
|
Pinatti LM, Sinha HN, Brummel CV, Goudsmit CM, Geddes TJ, Wilson GD, Akervall JA, Brenner CJ, Walline HM, Carey TE. Association of human papillomavirus integration with better patient outcomes in oropharyngeal squamous cell carcinoma. Head Neck 2020; 43:544-557. [PMID: 33073473 DOI: 10.1002/hed.26501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The molecular drivers of human papillomavirus-related head and neck squamous cell carcinoma (HPV + HNSCC) are not entirely understood. This study evaluated the relationship between HPV integration, expression of E6/E7, and patient outcomes in p16+ HNSCCs. METHODS HPV type was determined by HPV PCR-MassArray, and integration was called using detection of integrated papillomavirus sequences polymerase chain reaction (PCR). We investigated whether fusion transcripts were produced by reverse transcriptase polymerase chain reaction (RT-PCR). E6/E7 expression was assessed by quantitative RT-PCR. We assessed if there was a relationship between integration and E6/E7 expression, clinical variables, or patient outcomes. RESULTS Most samples demonstrated HPV integration, which sometimes resulted in a fusion transcript. HPV integration was positively correlated with age at diagnosis and E6/E7 expression. There was a significant difference in survival between patients with vs without integration. CONCLUSIONS Contrary to previous reports, HPV integration was associated with improved patient survival. Therefore, HPV integration may act as a molecular marker of good prognosis.
Collapse
Affiliation(s)
- Lisa M Pinatti
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, Michigan, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hana N Sinha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Collin V Brummel
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine M Goudsmit
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - George D Wilson
- Beaumont BioBank, Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Radiation Oncology, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Jan A Akervall
- Beaumont BioBank, Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Otolaryngology, Saint Joseph Mercy Hospital, Ypsilanti, Michigan, USA
| | - Chad J Brenner
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Walline
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Zheng X, Wang X, Zheng L, Zhao H, Li W, Wang B, Xue L, Tian Y, Xie Y. Construction and Analysis of the Tumor-Specific mRNA-miRNA-lncRNA Network in Gastric Cancer. Front Pharmacol 2020; 11:1112. [PMID: 32848739 PMCID: PMC7396639 DOI: 10.3389/fphar.2020.01112] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Weighted correlation network analysis (WGCNA) is a statistical method that has been widely used in recent years to explore gene co-expression modules. Competing endogenous RNA (ceRNA) is commonly involved in the cancer gene expression regulation mechanism. Some ceRNA networks are recognized in gastric cancer; however, the prognosis-associated ceRNA network has not been fully identified using WGCNA. We performed WGCNA using datasets from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) to identify cancer-associated modules. The criteria of differentially expressed RNAs between normal stomach samples and gastric cancer samples were set at the false discovery rate (FDR) < 0.01 and |fold change (FC)| > 1.3. The ceRNA relationships obtained from the RNAinter database were examined by both the Pearson correlation test and hypergeometric test to confirm the mRNA–lncRNA regulation. Overlapped genes were recognized at the intersections of genes predicted by ceRNA relationships, differentially expressed genes, and genes in cancer-specific modules. These were then used for univariate and multivariate Cox analyses to construct a risk score model. The ceRNA network was constructed based on the genes in this model. WGCNA-uncovered genes in the green and turquoise modules are those most associated with gastric cancer. Eighty differentially expressed genes were observed to have potential prognostic value, which led to the identification of 12 prognosis-related mRNAs (KIF15, FEN1, ZFP69B, SP6, SPARC, TTF2, MSI2, KYNU, ACLY, KIF21B, SLC12A7, and ZNF823) to construct a risk score model. The risk genes were validated using the GSE62254 and GSE84433 datasets, with 0.82 as the universal cutoff value. 12 genes, 12 lncRNAs, and 35 miRNAs were used to build a ceRNA network with 86 dysregulated lncRNA–mRNA ceRNA pairs. Finally, we developed a 12-gene signature from both prognosis-related and tumor-specific genes, and then constructed a ceRNA network in gastric cancer. Our findings may provide novel insights into the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiaohao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Zheng
- Department of General Surgery, The First People's Hospital of Dongcheng District, Beijing, China
| | - Hao Zhao
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|