1
|
Sharma B, Torres MM, Rodriguez S, Gangwani L, Kumar S. MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons. Neural Regen Res 2024; 19:2698-2707. [PMID: 38595288 PMCID: PMC11168514 DOI: 10.4103/nrr.nrr-d-23-01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00026/figure1/v/2024-04-08T165401Z/r/image-tiff Gamma-aminobutyric acid (GABA)ergic neurons, the most abundant inhibitory neurons in the human brain, have been found to be reduced in many neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia. Our previous study identified the upregulation of microRNA-502-3p (miR-502-3p) and downregulation of GABA type A receptor subunit α-1 in Alzheimer's disease synapses. This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function. In vitro studies were performed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs. In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunit α-1 mRNA. Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunit α-1 gene and suppresses the luciferase activity. Furthermore, quantitative reverse transcription-polymerase chain reaction, miRNA in situ hybridization, immunoblotting, and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunit α-1 level, while suppression of miR-502-3p increased the level of GABA type A receptor subunit α-1 protein. Notably, as a result of the overexpression of miR-502-3p, cell viability was found to be reduced, and the population of necrotic cells was found to be increased. The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney (HEK) recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function, suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function. Additionally, the levels of proteins associated with Alzheimer's disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression. The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p. We propose that micro-RNA, in particular miR-502-3p, could be a potential therapeutic target to modulate GABAergic synapse function in neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia.
Collapse
Affiliation(s)
- Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M. Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sheryl Rodriguez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
2
|
Zhou Y, Li R. Exosomal miR-502-5p suppresses the progression of gastric cancer by repressing angiogenesis through the Wnt/β-catenin pathway. Ir J Med Sci 2024:10.1007/s11845-024-03789-0. [PMID: 39325329 DOI: 10.1007/s11845-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant global health concern, ranking as the fifth most common cancer and the third leading cause of cancer-related deaths. The role of miR-502-5p in various cancers has been studied, but its specific impact on gastric cancer through exosomes is not well understood. This study aimed to investigate the role and mechanism of exosome-derived miR-502-5p in gastric cancer. METHODS Differential expression of miR-502-5p in tissues or serum of GC patients was determined using qRT-PCR. The impact of miR-502-5p on cell proliferation, migration, and invasion was assessed through in vitro and in vivo experiments. The potential of exosome-miR-502-5p to inhibit metastatic ability was also explored by using vivo and vitro assay. Furthermore, the underlying mechanism of miR-502-5p in gastric cancer was investigated using western blotting. RESULTS It was found that miR-502-5p suppressed the proliferation, migration, and invasion of gastric cancer cells. Exosome-miR-502-5p expression was negatively linked to metastatic ability and demonstrated inhibition of metastasis in vitro and in vivo. Additionally, miR-502-5p appeared to inhibit angiogenesis through the Wnt/β-catenin pathway in gastric cancer. CONCLUSIONS Exosomal miR-502-5p acts as a suppressor in the development and progression of gastric cancer, suggesting its potential as a target for anti-cancer therapy or as a diagnostic biomarker.
Collapse
Affiliation(s)
- Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Zhang J, He Y, Ruan Q, Bi A, Zhou J, Weng S, Ma H, Lin T, Wang H, Xu Y. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis modulates the survival of intracellular Mycobacterium tuberculosis and autophagy in macrophages. Cell Signal 2024; 121:111271. [PMID: 38944259 DOI: 10.1016/j.cellsig.2024.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Circular RNAs (circRNAs) play a critical role in pathological mechanisms of Mycobacterium tuberculosis (Mtb) and can be used as a new biomarker for active tuberculosis (ATB) diagnosis. Therefore, we identified significantly dysregulated circRNAs in ATB patients and healthy controls (HC) and explored their molecular mechanism. We found that hsa_circ_0002371 was significantly up-regulated in PBMCs of ATB patients and Mycobacterium tuberculosis H37Rv- or Mycobacterium bovis bacillus Calmette Guerin (BCG)-infected THP-1 cells. Functional experiments demonstrated that hsa_circ_0002371 inhibited autophagy in BCG-infected THP-1 cells and promoted intracellular BCG survival rate. In terms of mechanism, hsa_circ_0002371 facilitated the expression of hsa-miR-502-5p, as shown by bioinformatics and dual-luciferase reporter gene analysis, respectively. Notably, hsa-miR-502-5p inhibited autophagy via suppressing autophagy related 16 like 1 (ATG16L1) in BCG-infected macrophages and thus promoting intracellular BCG growth. In summation, hsa_circ_0002371 increased the suppression of hsa-miR-502-5p on ATG16L1 and inhibited autophagy to promote Mtb growth in macrophages. In Conclusion, our data suggested that hsa_circ_0002371 was significantly up-regulated in the PBMCs of ATB patients compared with HC. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis promoted the survival of intracellular Mtb and inhibited autophagy in macrophages. Our findings suggested hsa_circ_0002371 could act as a potential diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinyi Zhang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yumo He
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Aixiao Bi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufeng Weng
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Huixia Ma
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Taiyue Lin
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Honghai Wang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Ying Xu
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
5
|
Li J, Xu X, Xu K, Zhou X, Wu K, Yao Y, Liu Z, Chen C, Wang L, Sun Z, Jiao D, Han X. N6-methyladenosine-modified circSLCO1B3 promotes intrahepatic cholangiocarcinoma progression via regulating HOXC8 and PD-L1. J Exp Clin Cancer Res 2024; 43:119. [PMID: 38641828 PMCID: PMC11031933 DOI: 10.1186/s13046-024-03006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Refractoriness to surgical resection and chemotherapy makes intrahepatic cholangiocarcinoma (ICC) a fatal cancer of the digestive system with high mortality and poor prognosis. Important function invests circRNAs with tremendous potential in biomarkers and therapeutic targets. Nevertheless, it is still unknown how circRNAs contribute to the evolution of ICC. METHODS CircRNAs in paired ICC and adjacent tissues were screened by circRNAs sequencing. To explore the impact of circRNAs on ICC development, experiments involving gain and loss of function were conducted. Various experimental techniques, including quantitative real-time PCR (qPCR), western blotting, RNA immunoprecipitation (RIP), luciferase reporter assays, RNA pull-down, chromatin immunoprecipitation (ChIP), ubiquitination assays and so on were employed to identify the molecular regulatory role of circRNAs. RESULTS Herein, we reported a new circRNA, which originates from exon 9 to exon 15 of the SLCO1B3 gene (named circSLCO1B3), orchestrated ICC progression by promoting tumor proliferation, metastasis and immune evasion. We found that the circSLCO1B3 gene was highly overexpressed in ICC tissues and related to lymphatic metastasis, tumor sizes, and tumor differentiation. Mechanically, circSLCO1B3 not only promoted ICC proliferation and metastasis via miR-502-5p/HOXC8/SMAD3 axis, but also eradicated anti-tumor immunity via suppressing ubiquitin-proteasome-dependent degradation of PD-L1 by E3 ubiquitin ligase SPOP. We further found that methyltransferase like 3 (METTL3) mediated the m6A methylation of circSLCO1B3 and stabilizes its expression. Our findings indicate that circSLCO1B3 is a potential prognostic marker and therapeutic target in ICC patients. CONCLUSIONS Taken together, m6A-modified circSLCO1B3 was correlated with poor prognosis in ICC and promoted ICC progression not only by enhancing proliferation and metastasis via potentiating HOXC8 expression, but also by inducing immune evasion via antagonizing PD-L1 degradation. These results suggest that circSLCO1B3 is a potential prognostic marker and therapeutic target for ICC.
Collapse
Affiliation(s)
- Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Xiaohong Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kaihao Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xueliang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuan Yao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ling Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Li Z, Tong G, Peng X, Wang S. Circ_0000370 Plays an Oncogenic Role in Colorectal Cancer by Regulating the miR-502-5p/SIRT1 Axis. Biochem Genet 2024; 62:1231-1247. [PMID: 37561331 DOI: 10.1007/s10528-023-10468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
The importance of circular RNA has been reported in cancer development. However, the role and mechanism of circ_0000370 in CRC progression are still unclear. Quantitative real-time PCR and Western blot assay were performed to measure RNA and protein expression. Cell proliferation was assessed by cell colony formation assay and 5-Ethynyl-2'-deoxyuridine assay. Flow cytometry was used to measure cell apoptosis. Cell migration and invasion were detected by transwell assay. The intermolecular target relations between miR-502-5p and circ_0000370 or SIRT1 were confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. A xenograft tumor model was established to examine the role of circ_0000370 in tumor growth in vivo. As compared with controls, the expression of circ_0000370 was upregulated in CRC tissues and cells. Circ_0000370 depletion inhibited CRC cell proliferation, migration and invasion but induced cell apoptosis. Meanwhile, circ_0000370 depletion restrained tumor growth in vivo. In addition, miR-502-5p inhibitor partly reverted the impacts of circ_0000370 knockdown on CRC cells. Moreover, miR-502-5p mimic-caused effects on cell phenotypes were attenuated by SIRT1 overexpression. Circ_0000370 induced the proliferation and metastasis of CRC cells by sponging miR-502-5p and enhancing SIRT1 expression, which provided a possible target for CRC treatment.
Collapse
Affiliation(s)
- Zhu Li
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, 518000, Guangdong, China
| | - Gangling Tong
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, 518000, Guangdong, China
| | - Xiaodan Peng
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, 518000, Guangdong, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
7
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
9
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
10
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Combining STAT3-Targeting Agents with Immune Checkpoint Inhibitors in NSCLC. Cancers (Basel) 2023; 15:cancers15020386. [PMID: 36672335 PMCID: PMC9857288 DOI: 10.3390/cancers15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite recent therapeutic advances, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor (TF) with multiple tumor-promoting effects in NSCLC, including proliferation, anti-apoptosis, angiogenesis, invasion, metastasis, immunosuppression, and drug resistance. Recent studies suggest that STAT3 activation contributes to resistance to immune checkpoint inhibitors. Thus, STAT3 represents an attractive target whose pharmacological modulation in NSCLC may assist in enhancing the efficacy of or overcoming resistance to immune checkpoint inhibitors. In this review, we discuss the biological mechanisms through which STAT3 inhibition synergizes with or overcomes resistance to immune checkpoint inhibitors and highlight the therapeutic strategy of using drugs that target STAT3 as potential combination partners for immune checkpoint inhibitors in the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-210-746-2508
| |
Collapse
|
11
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
12
|
Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol 2022; 11:44. [PMID: 35907881 PMCID: PMC9338491 DOI: 10.1186/s40164-022-00297-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2023] Open
Abstract
The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuandi Liu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Xibao Yu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Ling Xu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Yangqiu Li
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| | - Chengwu Zeng
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| |
Collapse
|
13
|
Cheng J, Yang Q, Han X, Wang H, Wu K, Zhao H. Yin Yang 1-stimulated long noncoding RNA bladder cancer-associated transcript 1 upregulation facilitates esophageal carcinoma progression via the microRNA-5590-3p/programmed cell death-ligand 1 pathway. Bioengineered 2022; 13:10244-10257. [PMID: 35435118 PMCID: PMC9161860 DOI: 10.1080/21655979.2022.2061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Jingge Cheng
- Thoracic Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Yang
- Thoracic Surgery Department, Handan Central Hospital, Handan, China
| | - Xia Han
- Thoracic Surgery Department, Xingtai People’s Hospital, Xingtai, China
| | - Haotian Wang
- General Surgery Department, Xi’an Aerospace General Hospital, Xi’an, China
| | - Kun Wu
- Anesthesiology Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongye Zhao
- Dermatology Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Luo S, Deng F, Yao N, Zheng F. Circ_0005875 sponges miR-502-5p to promote renal cell carcinoma progression through upregulating E26 transformation specific-1. Anticancer Drugs 2022; 33:e286-e298. [PMID: 34407050 DOI: 10.1097/cad.0000000000001205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in various cancers, including renal cell carcinoma (RCC). We aimed to explore the role and underlying mechanism of circ_0005875 in RCC. The expression levels of circ_0005875, microRNA-502-5p (miR-502-5p) and E26 transformation specific-1 (ETS1) mRNA were determined by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8, colony formation, and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell migration and invasion were monitored by wound healing assay and transwell assay, respectively. Flow cytometry analysis was applied to determine cell apoptosis and cell cycle distribution. Western blot assay was performed to measure the protein expression of CyclinD1 and ETS1. The interaction between miR-502-5p and circ_0005875 or ETS1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft tumor model was established to confirm the role of circ_0005875 in vivo. Circ_0005875 and ETS1 were upregulated and miR-502-5p was downregulated in RCC tissues and cells. Knockdown of circ_0005875 suppressed RCC cell proliferation, migration and invasion, and induced apoptosis and cell cycle arrest. MiR-502-5p was a target of circ_0005875, and miR-502-5p inhibition reversed the inhibitory effects of circ_0005875 knockdown on the malignant behaviors of RCC cells. ETS1 was a direct target of miR-502-5p, and miR-502-5p exerted its anti-tumor role in RCC cells by targeting ETS1. Moreover, circ_0005875 knockdown decreased ETS1 expression by sponging miR-502-5p. Additionally, circ_0005875 depletion suppressed tumor growth in vivo. Circ_0005875 knockdown suppressed RCC progression by regulating miR-502-5p/ETS1 axis, which might provide a promising therapeutic target for RCC.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang
| | - Fang Deng
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Nana Yao
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Fu Zheng
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
15
|
Zhan L, Yang J, Liu Y, Cheng Y, Liu H. MicroRNA miR-502-5p inhibits ovarian cancer genesis by downregulation of GINS complex subunit 2. Bioengineered 2021; 12:3336-3347. [PMID: 34288816 PMCID: PMC8806667 DOI: 10.1080/21655979.2021.1946347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies with high incidence and mortality and the eighth most common cancer-associated mortality in women worldwide. Aberrant expression of the GINS complex subunit 2 (GINS2) gene and miR-502-5p has been associated with cancer progression. This study aims to investigate the specific molecular mechanism of the miR-502-5p-GINS2 axis in OC. GINS2 and miR-502-5p expression in OC tissues and cell lines was measured using RT-qPCR. Next, we investigated the interaction between miR-502-5p and GINS2 using a luciferase assay. The role of the miR-502-5p-GINS2 axis was detected by assessing cell proliferation, migration, and apoptosis levels, such as caspase-3 activity and caspase-3 protein expression, in the OC cell lines CaOV3 and SKOV3, respectively. MiR-502-5p expression was decreased, and GINS2 expression was dramatically elevated in OC tissues and cells. Upregulation of miR-502-5p expression repressed cellular proliferation and migration levels but increased the cellular apoptosis level. GINS2 overexpression enhanced the proliferation and migration levels but hampered OC cell apoptosis. Moreover, miR-502-5p inhibited GINS2 expression and suppressed OC tumorigenesis. miR-502-5p targeting GINS2 suppressed OC progression by inhibiting cell growth and promoting cell apoptosis. Hence, we provide a comprehensive understanding of OC involving both miR-502-5p and GINS2, which might be effective therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Lili Zhan
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Jing Yang
- Dept of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yang Liu
- Dept of Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yanxiang Cheng
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Hua Liu
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| |
Collapse
|
16
|
Liu W, Chen H, Wang D. Protective role of astragaloside IV in gastric cancer through regulation of microRNA-195-5p-mediated PD-L1. Immunopharmacol Immunotoxicol 2021; 43:443-451. [PMID: 34124983 DOI: 10.1080/08923973.2021.1936013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM Astragaloside IV (AS-IV) was reported to exert anti-cancer function in many cancers, but its actions in gastric cancer (GC) remain unclear. In the present study, we tried to elaborate the underlying mechanism by which AS-IV regulated the epithelial-mesenchymal transition (EMT) and angiogenesis of GC cells. METHODS The expressions of hsa-miR-15b-5p, hsa-miR-15a-5p, hsa-miR-195-5p, hsa-miR-424-5p and hsa-miR-497-5p in GC tissues and adjacent normal tissues were predicted by TCGA database. SGC7901 or MGC803 cells were treated with AS-IV, or transfected with miR-195-5p inhibitor/mimic or pcDNA3.1-PD-L1 followed by detection of cell proliferation, EMT and angiogenesis. The target relation between miR-195-5p and PD-L1 was confirmed by dual luciferase reporter gene assay. RESULTS Elevated hsa-miR-15b-5p, hsa-miR-15a-5p and hsa-miR-424-5p expressions were found in GC tissues, while decreased hsa-miR-195-5p and hsa-miR-497-5p expressions were observed in GC tissues. AS-IV inhibits EMT and angiogenesis in GC. PD-L1 was a potential target of miR-195-5p. Down-regulation of miR-195-5p or elevated PD-L1 expression reverses the inhibitory effect of AS-IV on EMT and angiogenesis of GC cells. CONCLUSION The present study demonstrated that AS-IV inhibited EMT and angiogenesis in GC through upregulation of miR-195-5p, highlighting the potential therapeutic effect of AS-IV on GC via miR-195-5p-regulated PD-L1.
Collapse
Affiliation(s)
- Wei Liu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| | - Han Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, P.R. China
| |
Collapse
|
17
|
Vathiotis IA, Gomatou G, Stravopodis DJ, Syrigos N. Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22105383. [PMID: 34065396 PMCID: PMC8160779 DOI: 10.3390/ijms22105383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has long been implicated in modeling antitumor immunity; PD-1/PD-L1 axis inhibitors exert their antitumor effects by relieving PD-L1-mediated suppression on tumor-infiltrating T lymphocytes. However, recent studies have unveiled a distinct, tumor-intrinsic, potential role for PD-L1. In this review, we focus on tumor-intrinsic PD-L1 signaling and delve into preclinical evidence linking PD-L1 protein expression with features of epithelial-to-mesenchymal transition program, cancer stemness and known oncogenic pathways. We further summarize data from studies supporting the prognostic significance of PD-L1 in different tumor types. We show that PD-L1 may indeed have oncogenic potential and act as a regulator of tumor progression and metastasis.
Collapse
Affiliation(s)
- Ioannis A. Vathiotis
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.G.); (N.S.)
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
- Correspondence: ; Tel.: +30-69-4882-2683
| | - Georgia Gomatou
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.G.); (N.S.)
| | - Dimitrios J. Stravopodis
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikolaos Syrigos
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.G.); (N.S.)
| |
Collapse
|
18
|
Zheng H, Yang C, Tang J. Cyclic RNA Circ_0000735 sponges miR-502-5p to promote bladder cancer cell proliferation and invasion and inhibit apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2994-3003. [PMID: 33425100 PMCID: PMC7791388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effect on the proliferation, invasion, and apoptosis of bladder cancer cells through miR-502-5p of the Circ_0000735 circular RNA. METHODS Circ_0000735 and miR-502-5p expression of bladder cancer patients in malignant and paracancerous tissues was identified using qRT-PCR. Nucleoplasm isolation assay and RNase R enzymatic assay were used to classify Circ_0000735 subcellular origin and stability. Dual luciferase reporter assay and RIP assay were used to confirm Circ_0000735 and miR-502-5p targeting relationships. Cell proliferation, apoptosis, and invasion capacity were identified using CCK8, flow cytometry, and transwell assays. To confirm the effect of Circ_0000735 on tumorigenesis in nude mice, in vivo experiments were conducted. RESULTS Circ_0000735 expression was increased in bladder cancer tissues and cells compared with paraneoplastic tissues and normal cells, and miR-502-5p expression was reduced (both P<0.05). In the cytoplasm, Circ_0000735 was largely clustered and could not be digested by the RNase R enzyme, and ceRNA may play a role in bladder cancer cells. Circ_0000735 silencing prevented cell proliferation and invasion and facilitated apoptosis (all P<0.05). The incorporation of miR-502-5p inhibitor rescued the effect on bladder cancer cells of Circ_0000735 silencing. In vitro experiments showed that inhibition of Circ_0000735 expression was beneficial in suppressing tumorigenic ability in nude mice. CONCLUSION Circ_0000735 can adsorb miR-502-5p to promote bladder cancer cell proliferation and invasion and inhibit apoptosis. Circ_0000735 may be an effective molecular target for bladder cancer therapy.
Collapse
Affiliation(s)
- Hong Zheng
- Clinical College of Xiangnan UniversityChenzhou, Hu’nan Province, China
- Department of Urology, Affiliated Hospital of Xiangnan UniversityChenzhou, Hu’nan Province, China
| | - Changjun Yang
- Department of Urology, Dongguan Waterfront Zone Central HospitalDongguan, Guangdong Province, China
| | - Jiansheng Tang
- Department of Urology, Affiliated Hospital of Xiangnan UniversityChenzhou, Hu’nan Province, China
| |
Collapse
|