1
|
Zhao J, Zhu K, Li N, Xing L, Sheng R, Shen Y, Guo R. Synthetic and Pharmacological Activities of Alantolactone and Its Derivatives. Chem Biodivers 2024:e202401798. [PMID: 39679983 DOI: 10.1002/cbdv.202401798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Alantolactone, a sesquiterpene lactone, is isolated from the traditional Chinese medicinal herb Inula helenium L. (Asteraceae). Alantolactone is known as its wide spectrum of biological effects, including antimicrobial, antifungal, antiviral, and anthelmintic activities; anti-inflammatory activities; and antiproliferative effects on several cancer cell lines. Thus, it has received extensive attention, causing in-depth research in medicinal chemistry, and numerous undescribed alantolactone derivatives have been synthesized through different strategies. Herein, recent advances in diverse bioactivities and mechanism of alantolactone, including its derivatives, were summarized.
Collapse
Affiliation(s)
- Jianjun Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kai Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Kundu S, Sarkar S, Acharya Chowdhury A. Anti-Leukemic Attributes of Natural Compounds Targeting Autophagy: A Closer Look into the Molecular Mechanisms. Nutr Cancer 2024; 76:236-251. [PMID: 38263604 DOI: 10.1080/01635581.2024.2306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Leukemia is a heterogeneous clonal cancer that affects millions of individuals around the world. Despite substantial breakthroughs in cancer treatment, traditional chemotherapy and radiotherapy remain ineffective, and therapeutic resistance still stands as a big obstacle. As a result, there is an increasing attention being paid currently toward the potency of natural compounds as a complementary or alternative therapy for leukemia. Autophagy, a conserved cellular process where damaged or defective cytosolic components and macromolecules are destroyed and recycled, plays a dual role in promoting or suppressing the continuance of cancer at different junctures of its development. Current studies have reported that autophagy has a cardinal function in the genesis and progression of leukemia, making it a promising target for novel treatments. In this review, we have explored the effectiveness of certain natural compounds, such as curcumin, resveratrol, tanshinone IIA, quercetin, tetrandrine, parthenolide, berberine, pristimerin, and alantolactone, that modulate autophagy and regulate its associated signaling cascades at a molecular level in different types of leukemia. They have been shown to have synergistic effects with conventional chemotherapy, emphasizing their potential as supplementary medicines. However, additional research is required to fully comprehend their mechanisms of action and to maximize their role in clinical perspectives.
Collapse
Affiliation(s)
- Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | |
Collapse
|
3
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Jung YY, Ahn KS, Shen M. Unveiling autophagy complexity in leukemia: The molecular landscape and possible interactions with apoptosis and ferroptosis. Cancer Lett 2024; 582:216518. [PMID: 38043785 DOI: 10.1016/j.canlet.2023.216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Autophagy is a self-digestion multistep process in which causes the homeostasis through degradation of macromolecules and damaged organelles. The autophagy-mediated tumor progression regulation has been a critical point in recent years, revealing the function of this process in reduction or acceleration of carcinogenesis. Leukemia is a haematological malignancy in which abnormal expansion of hematopoietic cells occurs. The current and conventional therapies from chemotherapy to cell transplantation have failed to appropriately treat the leukemia patients. Among the mechanisms dysregulated in leukemia, autophagy is a prominent one in which can regulate the hallmarks of this tumor. The protective autophagy inhibits apoptosis and ferroptosis in leukemia, while toxic autophagy accelerates cell death. The proliferation and invasion of tumor cells are tightly regulated by the autophagy. The direction of regulation depends on the function of autophagy that is protective or lethal. The protective autophagy accelerates chemoresistance and radio-resistsance. The non-coding RNAs, histone transferases and other pathways such as PI3K/Akt/mTOR are among the regulators of autophagy in leukemia progression. The pharmacological intervention for the inhibition or induction of autophagy by the compounds including sesamine, tanshinone IIA and other synthetic compounds can chance progression of leukemia.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Sanya, China.
| |
Collapse
|
5
|
Sun Y, Yang M, Li S, Hu Y, Yang B, Li X, Yan R, Dai K. Alantolactone induces platelet apoptosis by activating the Akt pathway. Platelets 2023; 34:2173505. [PMID: 36813739 DOI: 10.1080/09537104.2023.2173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Alantolactone (ALT), a sesquiterpene lactone compound isolated from Inula helenium L., has recently attracted much attention for its anti-tumor properties. ALT reportedly functions by regulating the Akt pathway, which has been shown to be involved in programmed platelet death (apoptosis) and platelet activation. However, the precise effect of ALT on platelets remains unclear. In this study, washed platelets were treated with ALT in vitro, and apoptotic events and platelet activation were detected. In vivo, platelet transfusion experiments were employed to detect the effect of ALT on platelet clearance. Platelet counts were examined after intravenous injection of ALT. We found that ALT treatment induced Akt activation and Akt-mediated apoptosis in platelets. ALT-activated Akt elicited platelet apoptosis by activating phosphodiesterase (PDE3A) and PDE3A-mediated protein kinase A (PKA) inhibition. Pharmacological inhibition of the PI3K/Akt/PDE3A signaling pathway or PKA activation was found to protect platelets from apoptosis induced by ALT. Moreover, ALT-induced apoptotic platelets were removed faster in vivo, and ALT injection resulted in the platelet count decline. Either PI3K/Akt/PDE3A inhibitors or a PKA activator could protect platelets from clearance, ultimately ameliorating the ALT-induced decline in platelet count in the animal model. These results reveal the effects of ALT on platelets and their related mechanisms, suggesting potential therapeutic targets for the prevention and alleviation of possible side effects resulting from ALT treatments.
Collapse
Affiliation(s)
- Yueyue Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Mengnan Yang
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Shujun Li
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Ying Hu
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Biao Yang
- State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Xu Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| | - Rong Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| | - Kesheng Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Cyrus Tang Medical Institute, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Fu Z, Li S, Liu J, Zhang C, Jian C, Wang L, Zhang Y, Shi C. Natural Product Alantolactone Targeting AKR1C1 Suppresses Cell Proliferation and Metastasis in Non-Small-Cell Lung Cancer. Front Pharmacol 2022; 13:847906. [PMID: 35370661 PMCID: PMC8965451 DOI: 10.3389/fphar.2022.847906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, characterized by high invasion and metastasis. Aldo-keto reductase family 1 member C1 (AKR1C1) plays an important role in cancer cell proliferation and metastasis, and has gained attention as an anticancer drug target. Here, we report that the natural sesquiterpene lactone alantolactone (ALA) was shown to bind directly to AKR1C1 through the Proteome Integral Solubility Alteration (PISA) analysis, a label-free target identification approach based on thermal proteome profiling. Acting as a specific inhibitor of AKR1C1, ALA selectively inhibits the activity of AKR1C1 and ALA treatment in human non-small-cell lung cancer (NSCLC) cell results in a reduction in cell proliferation and metastasis, inhibition of AKR1C1 expression, and deactivation of STAT3. Moreover, ALA inhibited tumor growth in vivo, and the inhibition of AKR1C1 and STAT3 activation were also found in the murine xenograft model. Collectively, our work not only gives mechanistic insights to explain the bioactivity of ALA in anticancer but also provides opportunities of developing novel sesquiterpene lactone-based AKR1C1 inhibitors for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jinmei Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
9
|
Cai Y, Gao K, Peng B, Xu Z, Peng J, Li J, Chen X, Zeng S, Hu K, Yan Y. Alantolactone: A Natural Plant Extract as a Potential Therapeutic Agent for Cancer. Front Pharmacol 2021; 12:781033. [PMID: 34899346 PMCID: PMC8664235 DOI: 10.3389/fphar.2021.781033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Abstract
Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Kewa Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu X, Bian L, Duan X, Zhuang X, Sui Y, Yang L. Alantolactone: A sesquiterpene lactone with diverse pharmacological effects. Chem Biol Drug Des 2021; 98:1131-1145. [PMID: 34624172 DOI: 10.1111/cbdd.13972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
Alantolactone (Ala) is a sesquiterpene lactone that can be isolated from many herbal plants belonging to Asteraceae. Besides the antimicrobial activities against bacteria, fungi and viruses, Ala has also demonstrated significant anti-inflammatory effects in various models by inhibiting NF-κB and MAPKs to decrease the pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. The antitumor effects of Ala have been demonstrated in vitro and in vivo via inducing intrinsic apoptosis, oxidative stress, ER stress, cell cycle arrest and inhibiting autophagy and STAT3 phosphorylation, which are also involved in its combination or synergy with other antitumor drugs. Ala also has neuroprotective activity through attenuating oxidative stress and inflammation, besides its modulation of glucose and lipid metabolism. This review summarizes the recent advances of the pharmacological effects of Ala, including anti-inflammatory, antitumor, antimicrobial, neuroprotective activities, as well as the underlying mechanisms. Ala might be employed as a potential lead to develop drugs for multiple diseases.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Lijuan Bian
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoqin Duan
- Department of Rehabilitation Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xinming Zhuang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an excessive number of immature lymphocytes, including immature precursors of both B- and T cells. ALL affects children more often than adults. Immature lymphocytes lead to arrested differentiation and proliferation of cells. Its conventional treatments involve medication with dexamethasone, vincristine, and other anticancer drugs. Although the current first-line drugs can achieve effective treatment, they still cannot prevent the recurrence of some patients with ALL. Treatments have high risk of recurrence especially after the first remission. Currently, novel therapies to treat ALL are in need. Autophagy and apoptosis play important roles in regulating cancer development. Autophagy involves degradation of proteins and organelles, and apoptosis leads to cell death. These phenomena are crucial in cancer progression. Past studies reported that many potential anticancer agents regulate intracellular signaling pathways. Methods: The authors discuss the recent research findings on the role of autophagy and apoptosis in ALL. Results: The autophagy and apoptosis are widely used in the treatment of ALL. Most studies showed that many agents regulate autophagy and apoptosis in ALL cell models, clinical trials, and ALL animal models. Conclusions: In summary, activating autophagy and apoptosis pathways are the main strategies for ALL treatments. For ALL, combining new drugs with traditional chemotherapy and glucocorticoids treatments can achieve the greatest therapeutic effect by activating autophagy and apoptosis.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.,Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
13
|
Lunz K, Stappen I. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021; 26:3155. [PMID: 34070487 PMCID: PMC8197530 DOI: 10.3390/molecules26113155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.
Collapse
Affiliation(s)
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
14
|
Babaei G, Gholizadeh-Ghaleh Aziz S, Rajabi Bazl M, Khadem Ansari MH. A comprehensive review of anticancer mechanisms of action of Alantolactone. Biomed Pharmacother 2021; 136:111231. [PMID: 33454597 DOI: 10.1016/j.biopha.2021.111231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered as the main challenge of human communities, and it annually imposes a significant economic burden on society. Natural products have been used for treatment of many diseases including inflammation, infections, neurological disorders, atherosclerosis, asthma and cancer for many years. Sesquiterpene lactones (STLs) refers to a group of natural products with different biological activities. A type of STL that has recently attracted much attention is Alantolactone (ALT). In recent years, many studies have investigated the molecular mechanism of this compound affecting cancer cells and results suggest that this compound exerts its anticancer effects by providing free radicals and inhibiting some of the signaling pathways that are effective in progression of cancer cells. The present study is aimed to introduce the latest molecular mechanisms of ALT proposed by researchers in recent years.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
| | - Masoumeh Rajabi Bazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|