2
|
Shen X, Li M, Wang C, Liu Z, Wu K, Wang A, Bi C, Lu S, Long H, Zhu G. Hypoxia is fine-tuned by Hif-1α and regulates mesendoderm differentiation through the Wnt/β-Catenin pathway. BMC Biol 2022; 20:219. [PMID: 36199093 PMCID: PMC9536055 DOI: 10.1186/s12915-022-01423-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia naturally happens in embryogenesis and thus serves as an important environmental factor affecting embryo development. Hif-1α, an essential hypoxia response factor, was mostly considered to mediate or synergistically regulate the effect of hypoxia on stem cells. However, the function and relationship of hypoxia and Hif-1α in regulating mesendoderm differentiation remains controversial. Results We here discovered that hypoxia dramatically suppressed the mesendoderm differentiation and promoted the ectoderm differentiation of mouse embryonic stem cells (mESCs). However, hypoxia treatment after mesendoderm was established promoted the downstream differentiation of mesendoderm-derived lineages. These effects of hypoxia were mediated by the repression of the Wnt/β-Catenin pathway and the Wnt/β-Catenin pathway was at least partially regulated by the Akt/Gsk3β axis. Blocking the Wnt/β-Catenin pathway under normoxia using IWP2 mimicked the effects of hypoxia while activating the Wnt/β-Catenin pathway with CHIR99021 fully rescued the mesendoderm differentiation suppression caused by hypoxia. Unexpectedly, Hif-1α overexpression, in contrast to hypoxia, promoted mesendoderm differentiation and suppressed ectoderm differentiation. Knockdown of Hif-1α under normoxia and hypoxia both inhibited the mesendoderm differentiation. Moreover, hypoxia even suppressed the mesendoderm differentiation of Hif-1α knockdown mESCs, further implying that the effects of hypoxia on the mesendoderm differentiation were Hif-1α independent. Consistently, the Wnt/β-Catenin pathway was enhanced by Hif-1α overexpression and inhibited by Hif-1α knockdown. As shown by RNA-seq, unlike hypoxia, the effect of Hif-1α was relatively mild and selectively regulated part of hypoxia response genes, which fine-tuned the effect of hypoxia on mESC differentiation. Conclusions This study revealed that hypoxia is fine-tuned by Hif-1α and regulates the mesendoderm and ectoderm differentiation by manipulating the Wnt/β-Catenin pathway, which contributed to the understanding of hypoxia-mediated regulation of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01423-y.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| |
Collapse
|
3
|
Wang F, Yuan C, Liu B, Yang YF, Wu HZ. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. J Transl Med 2022; 20:310. [PMID: 35794555 PMCID: PMC9258109 DOI: 10.1186/s12967-022-03504-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Breast cancer (BC) is one of the most common malignant tumors with the highest mortality in the world. Modern pharmacological studies have shown that Syringin has an inhibitory effect on many tumors, but its anti-BC efficacy and mechanism are still unclear.
Methods
First, Syringin was isolated from Acanthopanax senticosus (Rupr. & Maxim.) Harms (ASH) by systematic solvent extraction and silica gel chromatography column. The plant name is composed of genus epithet, species additive words and the persons’ name who give its name. Then, the hub targets of Syringin against BC were revealed by bioinformatics. To provide a more experimental basis for later research, the hub genes which could be candidate biomarkers of BC and a ceRNA network related to them were obtained. And the potential mechanism of Syringin against BC was proved in vitro experiments.
Results
Syringin was obtained by liquid chromatography-mass spectrometry (LC–MS), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). Bioinformatics results showed that MAP2K1, PIK3CA, HRAS, EGFR, Caspase3, and PTGS2 were the hub targets of Syringin against BC. And PIK3CA and HRAS were related to the survival and prognosis of BC patients, the PIK3CA-hsa-mir-139-5p-LINC01278 and PIK3CA-hsa-mir-375 pathways might be closely related to the mechanism of Syringin against BC. In vitro experiments confirmed that Syringin inhibited the proliferation and migration and promoted apoptosis of BC cells through the above hub targets.
Conclusions
Syringin against BC via PI3K-AKT-PTGS2 and EGFR-RAS-RAF-MEK-ERK pathways, and PIK3CA and HRAS are hub genes for adjuvant treatment of BC.
Graphical Abstract
Collapse
|