1
|
Li H, Hu X, Wang L, Gu X, Chen S, Tang Y, Chen Y, Chen J, Yuan Z, Wang Y. The Expression of Ferroptosis-Related Genes in Hepatocellular Carcinoma and Their Relationships With Prognosis. J Hepatocell Carcinoma 2025; 12:629-648. [PMID: 40130081 PMCID: PMC11932120 DOI: 10.2147/jhc.s500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Background Ferroptosis, a form of cell death discovered in recent years, is expected to provide new targets for the diagnosis and treatment of hepatocellular carcinoma (HCC) through further research. Methods Based on data from The Cancer Genome Atlas (TCGA), we screened HCC-associated genes from 259 candidate genes in the FerrDb database. The screened genes were subjected to differential expression analysis, survival analysis, correlation analysis with clinical data, and univariate and multivariate Cox regression analysis. The results were validated with the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database and the Human Protein Atlas (HPA) database, and signaling pathways were analyzed with the Gene Set Enrichment Analysis (GSEA) enrichment analysis. Human normal hepatocytes and different liver cancer cell lines were used to verify the expression levels of genes, using quantitative reverse transcription PCR (RT-qPCR). Results Eight ferroptosis-related genes were finally selected, including ACSL3, ASNS, CHMP5, MYB, PCK2, PGD, SLC38A1, and YY1AP1. The expression of eight genes except PCK2 was significantly correlated with a lower survival rate of HCC, and the expression of PCK2 showed a correlation with a higher survival rate of HCC. The expression of all eight genes was also correlated with clinical traits. GSEA enrichment analysis obtained many pathways such as apoptosis, endocytosis, pathways in cancer, Wnt signaling pathway, primary bile acid biosynthesis, and fatty acid metabolism pathway. Conclusion The ACSL3, ASNS, CHMP5, MYB, PCK2, PGD, SLC38A1, and YY1AP1 genes may become markers and new targets for early diagnosis and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Hongxu Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xinyue Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Li Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiangran Gu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shibin Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Yixuan Tang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Yuan Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
3
|
Kim J, Koh DI, Lee M, Park YS, Hong SW, Shin JS, Lee MS, Kim MH, Lee JH, Jeong J, Bae S, Hong JK, Jeong HR, Ryu YS, Kim SM, Choi M, Kim H, Ryu H, Hur SC, Park J, Hur DY, Jin DH. Targeting isoforms of RON kinase (MST1R) drives antitumor efficacy. Cell Death Differ 2023; 30:2491-2507. [PMID: 37926711 PMCID: PMC10733321 DOI: 10.1038/s41418-023-01235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Recepteur d'origine nantais (RON, MST1R) is a single-span transmembrane receptor tyrosine kinase (RTK) aberrantly expressed in numerous cancers, including various solid tumors. How naturally occurring splicing isoforms of RON, especially those which are constitutively activated, affect tumorigenesis and therapeutic response, is largely unknown. Here, we identified that presence of activated RON could be a possible factor for the development of resistance against anti-EGFR (cetuximab) therapy in colorectal cancer patient tissues. Also, we elucidated the roles of three splicing variants of RON, RON Δ155, Δ160, and Δ165 as tumor drivers in cancer cell lines. Subsequently, we designed an inhibitor of RON, WM-S1-030, to suppress phosphorylation thereby inhibiting the activation of the three RON variants as well as the wild type. Specifically, WM-S1-030 treatment led to potent regression of tumor growth in solid tumors expressing the RON variants Δ155, Δ160, and Δ165. Two mechanisms for the RON oncogenic activity depending on KRAS genotype was evaluated in our study which include activation of EGFR and Src, in a trimeric complex, and stabilization of the beta-catenin. In terms of the immunotherapy, WM-S1-030 elicited notable antitumor immunity in anti-PD-1 resistant cell derived mouse model, likely via repression of M1/M2 polarization of macrophages. These findings suggest that WM-S1-030 could be developed as a new treatment option for cancer patients expressing these three RON variants.
Collapse
Affiliation(s)
- Joseph Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-In Koh
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Minki Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon Sun Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Jae-Sik Shin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Mi So Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Min-Hwa Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | | | | | - Jun Ki Hong
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Yea Seong Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Mi Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Mingee Choi
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Hyojin Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Hyun Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Sun-Chul Hur
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Junho Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hoon Jin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea.
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li S, Yang H, Li W, Liu JY, Ren LW, Yang YH, Ge BB, Zhang YZ, Fu WQ, Zheng XJ, Du GH, Wang JH. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH /PSAT1/serine metabolic pathway. Acta Pharmacol Sin 2022; 43:2709-2722. [PMID: 35354963 PMCID: PMC9525271 DOI: 10.1038/s41401-022-00894-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/27/2022] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. CRC is the second leading cause of cancer-related deaths. Although some progress in the treatment of CRC has been achieved, the molecular mechanism of CRC is still unclear. In this study, alcohol dehydrogenase 1C(ADH1C) was first identified as a target gene closely associated with the development of CRC by the comprehensive application of transcriptomics, proteomics, metabonomics and in silico analysis. The ADH1C mRNA and protein expression in CRC cell lines and tumor tissues was lower than that in normal intestinal epithelial cell lines and healthy tissues. Overexpression of ADH1C inhibited the growth, migration, invasion and colony formation of CRC cell lines and prevented the growth of xenograft tumors in nude mice. The inhibitory effects of ADH1C on CRC cells in vitro were exerted by reducing the expression of PHGDH/PSAT1 and the serine level. This inhibition could be partially reversed by adding serine to the culture medium. These results showed that ADH1C is a potential drug target in CRC.
Collapse
Affiliation(s)
- Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Yi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Wen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Hui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Bin-Bin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Zhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiang-Jin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022; 174:103681. [PMID: 35462030 DOI: 10.1016/j.critrevonc.2022.103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor (HER, ErbB) family has four members, epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. Although distinct in ligands and functions, all of the HER family members are receptor tyrosine kinases playing important roles in the pathogenesis of cancers. In the era of precision medicine, the HER family is one of the most important and successful cancer therapeutic targets, hallmarked by the approval of anti-EGFR therapies for the treatment of colorectal cancer and non-small cell lung cancer, and anti-HER2 therapies for the treatment of breast cancer and gastric cancer. This review briefly discusses how HER family members were discovered, their functions and roles in cancer, and most importantly, the developmental history and recent updates of therapies targeting HER family members, with colorectal cancer as a focus. We also discussed the patient selection and drug resistance to anti-EGFR therapies in the treatment of colorectal cancer.
Collapse
|
6
|
Zhang X, Xiao J, Fu X, Qin G, Yu M, Chen G, Li X. Construction of a Two-Gene Immunogenomic-Related Prognostic Signature in Lung Squamous Cell Carcinoma. Front Mol Biosci 2022; 9:867494. [PMID: 35463955 PMCID: PMC9024339 DOI: 10.3389/fmolb.2022.867494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has the highest tumor incidence in China. Lung squamous cell carcinoma (LUSC) is the most common type, accounting for 40–51% of primary lung cancers. LUSC is slow in growth and late in metastasis. Immune-related genes (IRGs) and immune infiltrating cells play a vital role in the clinical outcomes of LUSC. It is important to systematically study its immune gene map to help the prognosis of cancer patients. In this study, we combined the prognostic landscape and expression status of IRGs downloaded from the TCGA and InnatedDB databases and systematically analyzed the prognostic information of LUSC patients to obtain IRGs. After systematically exploring the survival analysis, prognosis-related genes were found, and the PPI network revealed that a total of 11 genes were hub genes. A two-gene prognosis risk model was established by multivariate Cox analysis. Two IRGs were closely correlated with the prognosis of LUSC. Based on these two genes, a new independent prognostic risk model was established, and this model was further verified in the GEO database. Moreover, the risk score of the model was correlated with sex, survival status, and lymphatic metastasis in LUSC patients, and the predictive risk of the prognostic risk model was significantly positively correlated with five kinds of immune cells (CD4 T cells, CD8 T cells, neutrophils, macrophages, and dendritic cells). This study comprehensively analyzed immunogenomics and presented immune-related prognostic biomarkers for LUSC.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Jing Xiao
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Xian Fu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guicheng Qin
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Mengli Yu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guihong Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaofeng Li, ; Guihong Chen,
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaofeng Li, ; Guihong Chen,
| |
Collapse
|
7
|
Gong Q, Yu H, Ding G, Ma J, Wang Y, Cheng X. Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. Eur J Pharmacol 2021; 916:174726. [PMID: 34954232 DOI: 10.1016/j.ejphar.2021.174726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is commonly used in the clinical treatment of melanoma, but it is prone to resistance leading to the poor effectiveness. The mechanisms of resistance are complicated including the cancer stemness. Astragalus polysaccharide (APS) is one of the active components of traditional Chinese herbal medicine Astragalus Membranaceus. Our previous work was reported that APS had an inhibitory effect on the stemness of melanoma. In this study we established chemo-resistant melanoma cells and found that expression of stemness genes were upregulated in the resistant melanoma cells. And APS could downregulate expression of stemness genes. Furthermore, APS combined with cisplatin (DDP) could significantly slow down the tumor growth in the mouse model induced by DDP-resistant cells. In addition, we found that programmed death-ligand 1 (PD-L1) expression could be downregulated and the PI3K/AKT signaling could be affected by APS. These results suggested that APS could be a potential candidate in combination with chemotherapeutic agents, which might play a role in reducing the occurrence of resistance and improving the prognosis of melanoma patients.
Collapse
Affiliation(s)
- Qianyi Gong
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|