1
|
Cho SH, Kim YM, An HJ, Kim JH, Kim NK. miR-665-Mediated Regulation of AHCYL2 and BVES Genes in Recurrent Implantation Failure. Genes (Basel) 2024; 15:244. [PMID: 38397233 PMCID: PMC10888078 DOI: 10.3390/genes15020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The primary goal of this investigation was to identify mRNA targets affected by dysregulated miRNAs in RIF. This was accomplished by comprehensively analyzing mRNA and miRNA expression profiles in two groups: female subjects with normal reproductive function (control, n = 5) and female subjects experiencing recurrent implantation failure (RIF, n = 5). We conducted transcriptome sequencing and small RNA sequencing on endometrial tissue samples from these cohorts. Subsequently, we validated a selection of intriguing findings using real-time PCR with samples from the same cohort. In total, our analysis revealed that 929 mRNAs exhibited differential expression patterns between the control and RIF patient groups. Notably, our investigation confirmed the significant involvement of dysregulated genes in the context of RIF. Furthermore, we uncovered promising correlation patterns within these mRNA/miRNA pairs. Functional categorization of these miRNA/mRNA pairs highlighted that the differentially expressed genes were predominantly associated with processes such as angiogenesis and cell adhesion. We identified new target genes that are regulated by miR-665, including Blood Vessel Epicardial Substance (BVES) and Adenosylhomocysteinase like 2 (AHCYL2). Our findings suggest that abnormal regulation of genes involved in angiogenesis and cell adhesion, including BVES and AHCYL2, contributes to the endometrial dysfunction observed in women with recurrent implantation failure (RIF) compared to healthy women.
Collapse
Affiliation(s)
- Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
- College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Young Myeong Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
| |
Collapse
|
2
|
Ma J, Yu P, Ma S, Li J, Wang Z, Hu K, Su X, Zhang B, Cheng S, Wang S. Bioinformatics and Integrative Experimental Method to Identifying and Validating Co-Expressed Ferroptosis-Related Genes in OA Articular Cartilage and Synovium. J Inflamm Res 2024; 17:957-980. [PMID: 38370466 PMCID: PMC10871044 DOI: 10.2147/jir.s434226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common joint disease worldwide and is the primary cause of disability and chronic pain in older adults.Ferroptosis is a type of programmed cell death characterized by aberrant iron metabolism and reactive oxygen species accumulation; however, its role in OA is not known. Methods To identify ferroptosis markers co-expressed in articular cartilage and synovium samples from patients with OA, in silico analysis was performed.Signature genes were analyzed and the results were evaluated using a ROC curve prediction model.The biological function, correlation between Signature genes, immune cell infiltration, and ceRNA network analyses were performed. Signature genes and ferroptosis phenotypes were verified through in vivo animal experiments and clinical samples. The expression levels of non-coding RNAs in samples from patients with OA were determined using qRT-PCR. ceRNA network analysis results were confirmed using dual-luciferase assays. Results JUN, ATF3, and CDKN1A were identified as OA- and ferroptosis-associated signature genes. GSEA analysis demonstrated an enrichment of these genes in immune and inflammatory responses, and amino acid metabolism. The CIBERSORT algorithm showed a negative correlation between T cells and these signature genes in the cartilage, and a positive correlation in the synovium. Moreover, RP5-894D12.5 and FAM95B1 regulated the expression of JUN, ATF3, and CDKN1A by competitively binding to miR-1972, miR-665, and miR-181a-2-3p. In vivo, GPX4 was downregulated in both OA cartilage and synovium; however, GPX4 and GSH were downregulated, while ferrous ions were upregulated in patient OA cartilage and synovium samples, indicating that ferroptosis was involved in the pathogenesis of OA. Furthermore, JUN, ATF3, and CDKN1A expression was downregulated in both mouse and human OA synovial and cartilage tissues. qRT-PCR demonstrated that miR-1972, RP5-894D12.5, and FAM95B1 were differentially expressed in OA tissues. Targeted interactions between miR-1972 and JUN, and a ceRNA regulatory mechanism between RP5-894D12.5, miR-1972, and JUN were confirmed by dual-luciferase assays. Conclusion This study identified JUN, ATF3, and CDKN1A as possible diagnostic biomarkers and therapeutic targets for joint synovitis and OA. Furthermore, our finding indicated that RP5-894D12.5/miR-1972/JUN was a potential ceRNA regulatory axis in OA, providing an insight into the connection between ferroptosis and OA.
Collapse
Affiliation(s)
- Jinxin Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Peng Yu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shang Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jinjin Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Zhen Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Kunpeng Hu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xinzhe Su
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Bei Zhang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shao Cheng
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shangzeng Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhenhao Z, Ru C, Xiaofeng C, Heng Y, Gongxian W. A novel circular RNA, circMAML3, promotes tumor progression of prostate cancer by regulating miR-665/MAPK8IP2 axis. Cell Death Discov 2023; 9:455. [PMID: 38097567 PMCID: PMC10721837 DOI: 10.1038/s41420-023-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Many studies have now demonstrated that circRNAs are aberrantly expressed in cancer and are involved in the regulation of malignant tumor progression. However, the role of circMAML3 (hsa_circ_0125392) in prostate cancer has not been reported. circMAML3 was selected from public data through screening. The circMAML3 circular characterization was performed using Sanger sequencing, agarose gel electrophoresis assay, RNase R assay and actinomycin D assay. The expression of circMAML3 in prostate cancer tissues and cells was detected by qRT-PCR. In vivo and in vitro experiments were conducted to investigate the biological functions of circMAML3 in prostate cancer. Finally, the underlying mechanism of circMAML3 was revealed by qRT-PCR, luciferase reporter assay, miRNA Pulldown, RNA immunoprecipitation, western blotting, and rescue assay. Compared to normal prostate tissue and prostate epithelial cells, circMAML3 is highly expressed in prostate cancer tissues and cell lines. CircMAML3 overexpression promotes prostate cancer proliferation and metastasis, while knockdown of circMAML3 exerts the opposite effect. Mechanistically, circMAML3 promotes prostate cancer progression by upregulating MAPK8IP2 expression through sponge miR-665. Our research indicates that circMAML3 promotes prostate cancer progression through the circMAML3/miR-665/MAPK8IP2 axis. circMAML3 and MAPK8IP2 are upregulated in prostate cancer expression and play an oncogenic role, whereas miR-665 is downregulated in prostate cancer and plays an oncogenic role. Therefore, CircMAML3 may be a potential biomarker for prostate cancer diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Zeng Zhenhao
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 330000, Nanchang, China.
| | - Chen Ru
- Department of Urology, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, China
- Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, 29, Gulou District, 350001, Fuzhou, Fujian, P. R. China
| | - Cheng Xiaofeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, China
| | - Yang Heng
- Department of Urology, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, China
| | - Wang Gongxian
- Department of Urology, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, China.
| |
Collapse
|
4
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
5
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Ding Y, Bian TT, Li QY, He JR, Guo Q, Wu CY, Chen SS. A new risk model for CSTA, FAM83A, and MYCT1 predicts poor prognosis and is related to immune infiltration in lung squamous cell carcinoma. Am J Transl Res 2022; 14:7705-7725. [PMID: 36505278 PMCID: PMC9730102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To create a prognostic model based on differentially expressed genes (DEGs) in early lung squamous cell carcinoma (LUSC) and characterize the relationship between risk scores and tumor immune infiltration. METHODS We identified DEGs in normal and tumor tissues that overlapped between LUSC-related data sets from the Gene Expression Omnibus and the Cancer Genome Atlas and evaluated their roles in the diagnosis and prognosis of LUSC by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) analysis, meta-analysis and nomogram analysis. We then constructed a risk model based on Cox regression analysis and the Akaike information criterion and identified the relationship between LUSC risk scores and immune infiltration. RESULTS Sixty-two overlapping DEGs were involved with keratinocyte differentiation, epidermal cell differentiation, neutrophil migration, granulocyte chemotaxis, granulocyte migration, leukocyte aggregation, and positive regulation of nuclear factor-κB (NF-κB) activity. Overexpression of family with sequence similarity 83 member A (FAM83A) and MYC target 1 (MYCT1), kallikrein related peptidase 8 (KLK8), and downregulation of ADP ribosylation factor like GTPase 14 (ARL14), caspase recruitment domain family member 14 (CARD14), cystatin A (CSTA), dickkopf WNT signaling pathway inhibitor 4 (DKK4), desmoglein 3 (DSG3), and keratin 6B (KRT6B) were associated with a poor prognosis in LUSC and had significant value for LUSC diagnosis. The expression of CSTA, FAM83A, and MYCT1 and high-risk scores were independent risk factors for a poor prognosis in LUSC. A risk nomogram revealed that risk scores could predict the prognosis of LUSC. The risk score was associated with neutrophils, naive B cells, helper follicular T cells, and activated dendritic cells. CONCLUSIONS The expression levels of CSTA, FAM83A, and MYCT1 are related to the diagnosis and prognosis of LUSC and may have potential as therapeutic targets in LUSC. A risk model and nomogram based on CSTA, FAM83A, and MYCT1 can predict the prognosis of LUSC.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Ting-Ting Bian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Qian-Yun Li
- The Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu 310030, Zhejiang, China
| | - Jin-Rong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| |
Collapse
|
8
|
Lee SH, Brianna B. Therapeutic Targeting of Overexpressed MiRNAs in Cancer Progression. Curr Drug Targets 2022; 23:1212-1218. [PMID: 35702768 DOI: 10.2174/1389450123666220613163906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in the modulation of various biological processes, and their dysregulation is greatly associated with cancer progression as miRNAs can act as either tumour suppressors or oncogenes, depending on their intended target, mechanism of actions, and expression levels. This review paper aims to shed light on the role of overexpressed miRNAs in cancer progression. Cancer cells are known to upregulate specific miRNAs to inhibit the expression of genes regulating the cell cycle, such as PTEN, FOXO1, SOX7, caspases, KLF4, TRIM8, and ZBTB4. Inhibition of these genes promotes cancer development and survival by inducing cell growth, migration, and invasion while evading apoptosis, which leads to poor cancer survival rates. Therefore, the potential of antisense miRNAs in treating cancer is also explored in this review. Antisense miRNAs are chemically modified oligonucleotides that can reverse the action of overexpressed miRNAs. Currently, the therapeutic potential of antisense miRNAs is being validated in both in vitro and in vivo models. Studies have shown that antisense miRNAs could slow down the progression of cancer while enhancing the action of conventional anticancer drugs. These findings provide hope for future oncologic care as this novel intervention is in the process of clinical translation.
Collapse
Affiliation(s)
- Sau Har Lee
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Faculty of Health and Medical Sciences, Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Brianna Brianna
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Song Y, Kelava L, Zhang L, Kiss I. Microarray data analysis to identify miRNA biomarkers and construct the lncRNA-miRNA-mRNA network in lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e30393. [PMID: 36086747 PMCID: PMC10980501 DOI: 10.1097/md.0000000000030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/25/2022] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs), regulatory noncoding RNAs, are involved in gene regulation and may play a role in cancer development. The aim of this study was to identify miRNAs involved in lung adenocarcinoma (LUAD) using bioinformatics analysis. MiRNA (GSE135918), mRNA (GSE136043) and lncRNA (GSE130779) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed miRNAs (DEMis), mRNAs (DEMs), and lncRNA (DELs) in LUAD. We used DEMs for functional enrichment analysis. MiRNA expression quantification from The Cancer Genome Atlas (TCGA) was used to validate DEMis. LncBase Predicted v.2, Targetscan, and MiRBase were used to predict lncRNAs and mRNAs. The LUAD data in TCGA were used for overall survival (OS) analysis. We screened the downregulation of 8 DEMis and upregulation of 6 DEMis, and found that 70 signal pathways changed. We chose 3 relevant signaling pathways in lung cancer development, WNT, PI3K-Akt, and Notch, and scanned for mRNAs involved in them that are potential targets of these miRNAs. Then a lncRNA-miRNA-mRNA network was constructed. We also found 7 miRNAs that were associated with poor OS in LUAD. Low expression level of hsa-miR-30a was highly associated with poor OS in LUAD (P < .001) and the target genes of hsa-miR-30a-3p were abundant in the Wnt and AKT signaling pathways. In addition, our results reported for the first time that hsa-miR-3944 and hsa-miR-3652 were highly expressed in LUAD. And the high expression level of hsa-miR-3944 was associated with poor OS (P < .05). Hsa-miR-30a-3p may suppress the occurrence and progression of lung cancer through Wnt and AKT signaling pathways and become a good biomarker in LUAD. Hsa-miR-3944 and hsa-miR-3652 may serve as new biomarkers in LUAD.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti str 12, Pécs 7624, Hungary
| | - Lu Zhang
- Department of Health Science, Doctoral School of Health Science, University of Pécs, Vasvári Pál utca 4, Pécs 7622, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti str 12, Pécs 7624, Hungary
| |
Collapse
|
10
|
Fernandez GJ, Ramírez-Mejia JM, Urcuqui-Inchima S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J Nutr Biochem 2022; 109:109105. [PMID: 35858666 DOI: 10.1016/j.jnutbio.2022.109105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Vitamin D is associated with the stimulation of innate immunity, inflammation, and host defense against pathogens. Macrophages express receptors of Vitamin D, regulating transcription of genes related to immune processes. However, the transcriptional and post-transcriptional strategies controlling gene expression in differentiated macrophages, and how they are influenced by Vitamin D are not well understood. We studied whether Vitamin D enhances immune response by regulating the expression of microRNAs and mRNAs. Analysis of the transcriptome showed differences in expression of 199 genes, of which 68% were up-regulated, revealing the cell state of monocyte-derived macrophages differentiated with Vitamin D (D3-MDMs) as compared to monocyte-derived macrophages (MDMs). The differentially expressed genes appear to be associated with pathophysiological processes, including inflammatory responses, and cellular stress. Transcriptional motifs in promoter regions of up- or down-regulated genes showed enrichment of VDR motifs, suggesting possible roles of transcriptional activator or repressor in gene expression. Further, microRNA-Seq analysis indicated that there were 17 differentially expressed miRNAs, of which, 7 were up-regulated and 10 down-regulated, suggesting that Vitamin D plays a critical role in the regulation of miRNA expression during macrophages differentiation. The miR-6501-3p, miR-1273h-5p, miR-665, miR-1972, miR-1183, miR-619-5p were down-regulated in D3-MDMs compared to MDMs. The integrative analysis of miRNA and mRNA expression profiles predict that miR-1972, miR-1273h-5p, and miR-665 regulate genes PDCD1LG2, IL-1B, and CD274, which are related to the inflammatory response. Results suggest an essential role of Vitamin D in macrophage differentiation that modulates host response against pathogens, inflammation, and cellular stress.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Julieta M Ramírez-Mejia
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
11
|
Wang C, Gu X, Zhang X, Zhou M, Chen Y. Development and Validation of an E2F-Related Gene Signature to Predict Prognosis of Patients With Lung Squamous Cell Carcinoma. Front Oncol 2021; 11:756096. [PMID: 34745990 PMCID: PMC8569707 DOI: 10.3389/fonc.2021.756096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) generally correlates with poor clinical prognoses due to the lack of available prognostic biomarkers. This study is designed to identify a potential biomarker significant for the prognosis and treatment of LUSC, so as to provide a scientific basis for clinical treatment decisions. Methods Genomic changes in LUSC samples before and after radiation were firstly discussed to identify E2 factor (E2F) pathway of prognostic significance. A series of bioinformatics analyses and statistical methods were combined to construct a robust E2F-related prognostic gene signature. Furthermore, a decision tree and a nomogram were established according to the gene signature and multiple clinicopathological characteristics to improve risk stratification and quantify risk assessment for individual patients. Results In our investigated cohorts, the E2F-related gene signature we identified was capable of predicting clinical outcomes and therapeutic responses in LUSC patients, besides, discriminative to identify high-risk patients. Survival analysis suggested that the gene signature was independently prognostic for adverse overall survival of LUSC patients. The decision tree identified the strong discriminative performance of the gene signature in risk stractification for overall survival while the nomogram demonstrated a high accuracy. Conclusion The E2F-related gene signature may help distinguish high-risk patients so as to formulate personalized treatment strategy in LUSC patients.
Collapse
Affiliation(s)
- Cailian Wang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuyu Gu
- School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Min Zhou
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Sayyed AA, Gondaliya P, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Role of miRNAs In Cancer Diagnostics And Therapy: A Recent Update. Curr Pharm Des 2021; 28:471-487. [PMID: 34751112 DOI: 10.2174/1381612827666211109113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
The discovery of miRNAs has been one of the revolutionary developments and has led to the advent of new diagnostic and therapeutic opportunities for the management of cancer. In this regard, miRNA dysregulation has been shown to play a critical role in various stages of tumorigenesis, including tumor invasion, metastasis as well as angiogenesis. Therefore, miRNA profiling can provide accurate fingerprints for the development of diagnostic and therapeutic platforms. This review discusses the recent discoveries of miRNA-based tools for early detection of cancer as well as disease monitoring in cancers that are common, like breast, lung, hepatic, colorectal, oral and brain cancer. Based on the involvement of miRNA in different cancers as oncogenic miRNA or tumor suppressor miRNA, the treatment with miRNA inhibitors or mimics is recommended. However, the stability and targeted delivery of miRNA remain the major limitations of miRNA delivery. In relation to this, several nanoparticle-based delivery systems have been reported which have effectively delivered the miRNA mimics or inhibitors and showed the potential for transforming these advanced delivery systems from bench to bedside in the treatment of cancer metastasis and chemoresistance. Based on this, we attempted to uncover recently reported advanced nanotherapeutic approaches to deliver the miRNAs in the management of different cancers.
Collapse
Affiliation(s)
- Adil A Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Palak Bhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Mukund Mali
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| |
Collapse
|