1
|
Zhang Y, Lian Q, Nie Y, Zhao W. Identification of atrial fibrillation-related genes through transcriptome data analysis and Mendelian randomization. Front Cardiovasc Med 2024; 11:1414974. [PMID: 39055656 PMCID: PMC11269132 DOI: 10.3389/fcvm.2024.1414974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Atrial fibrillation (AF) is a common persistent arrhythmia characterized by rapid and chaotic atrial electrical activity, potentially leading to severe complications such as thromboembolism, heart failure, and stroke, significantly affecting patient quality of life and safety. As the global population ages, the prevalence of AF is on the rise, placing considerable strains on individuals and healthcare systems. This study utilizes bioinformatics and Mendelian Randomization (MR) to analyze transcriptome data and genome-wide association study (GWAS) summary statistics, aiming to identify biomarkers causally associated with AF and explore their potential pathogenic pathways. Methods We obtained AF microarray datasets GSE41177 and GSE79768 from the Gene Expression Omnibus (GEO) database, merged them, and corrected for batch effects to pinpoint differentially expressed genes (DEGs). We gathered exposure data from expression quantitative trait loci (eQTL) and outcome data from AF GWAS through the IEU Open GWAS database. We employed inverse variance weighting (IVW), MR-Egger, weighted median, and weighted model approaches for MR analysis to assess exposure-outcome causality. IVW was the primary method, supplemented by other techniques. The robustness of our results was evaluated using Cochran's Q test, MR-Egger intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A "Veen" diagram visualized the overlap of DEGs with significant eQTL genes from MR analysis, referred to as common genes (CGs). Additional analyses, including Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and immune cell infiltration studies, were conducted on these intersecting genes to reveal their roles in AF pathogenesis. Results The combined dataset revealed 355 differentially expressed genes (DEGs), with 228 showing significant upregulation and 127 downregulated. Mendelian randomization (MR) analysis identified that the autocrine motility factor receptor (AMFR) [IVW: OR = 0.977; 95% CI, 0.956-0.998; P = 0.030], leucine aminopeptidase 3 (LAP3) [IVW: OR = 0.967; 95% CI, 0.934-0.997; P = 0.048], Rab acceptor 1 (RABAC1) [IVW: OR = 0.928; 95% CI, 0.875-0.985; P = 0.015], and tryptase beta 2 (TPSB2) [IVW: OR = 0.971; 95% CI, 0.943-0.999; P = 0.049] are associated with a reduced risk of atrial fibrillation (AF). Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW: OR = 1.030; 95% CI, 1.004-1.056; P = 0.024], integrin subunit beta 2 (ITGB2) [IVW: OR = 1.050; 95% CI, 1.017-1.084; P = 0.003], glutaminyl-peptide cyclotransferase (QPCT) [IVW: OR = 1.080; 95% CI, 1.010-0.997; P = 1.154], and tripartite motif containing 22 (TRIM22) [IVW: OR = 1.048; 95% CI, 1.003-1.095; P = 0.035] are positively associated with AF risk. Sensitivity analyses indicated a lack of heterogeneity or horizontal pleiotropy (P > 0.05), and leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs) impacting the MR results significantly. GO and KEGG analyses showed that CG is involved in processes such as protein polyubiquitination, neutrophil degranulation, specific and tertiary granule formation, protein-macromolecule adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all significantly enriched. The analysis of immune cell infiltration demonstrated associations of CG with various immune cells, including plasma cells, CD8T cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, activated mast cells, and neutrophils. Conclusion By integrating bioinformatics and MR approaches, genes such as AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified as causally linked to AF, enhancing our understanding of its molecular foundations. This strategy may facilitate the development of more precise biomarkers and therapeutic targets for AF diagnosis and treatment.
Collapse
Affiliation(s)
- Yujun Zhang
- Data Management Center, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Qiufang Lian
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Yanwu Nie
- School of Public Health, Nanchang University, Nanchang, China
| | - Wei Zhao
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| |
Collapse
|
2
|
Zhang S, Gao Y, Wang P, Wang S, Wang Y, Li M, Wang A, Zhao K, Zhang Z, Sun J, Guo D, Liang Z. Tryptophan metabolism enzymes are potential targets in ovarian clear cell carcinoma. Cancer Med 2023; 12:21996-22005. [PMID: 38062922 PMCID: PMC10757115 DOI: 10.1002/cam4.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/31/2023] Open
Abstract
AIM As the second most prevalent subtype of epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) is known for its chemoresistance to conventional platinum-based therapy. In this work, we examined the tryptophan (Trp) metabolism enzymes' differential expression in patients with OCCC to assess the potential for personalised treatment. METHODS A total of 127 OCCC tissues were used to construct tissue microarrays, and immunohistochemistry (IHC) staining of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 was performed. The correlations between Trp enzyme expression and clinical characteristics were analysed. RESULTS Positive IDO1, IDO2, TDO2 and IL4I1 staining was identified in 26.8%, 94.5%, 75.6% and 82.7% of OCCC respectively. IDO1-positive samples were more common in the chemoresistant group than in the platinum-sensitive group (46.7% vs. 19.8%). Moreover, positive expression of IDO1, TDO2 and IL4I1 was related to advanced stage, metastasis, bilateral tumours, endometriosis and tumour rupture (p < 0.05) respectively. Univariate analysis revealed a significant association between bilateral tumours, lymph node metastasis, advanced stage, distant metastasis and aberrant cytology with a poor prognosis for OCCC, while the absence of residual tumour was correlated with a favourable outcome (p < 0.05). However, only bilateral tumours and lymph node metastases were related to a poor prognosis after multivariate analysis. CONCLUSION This is the first study to investigate the expression of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 in OCCC tissues. IDO2, TDO2 and IL4I1 were detected in the majority of OCCC. Clinical traits were correlated with IDO1, IDO2, TDO2 and IL4I1 expression. IDO1 may be used as a therapeutic target given the large percentage of chemoresistant cases with IDO1 expression. These results will aid the development of personalised therapies for OCCC.
Collapse
Affiliation(s)
- Sumei Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Pan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingHebei ProvinceChina
| | - Shu Wang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- National Clinical Research Centre for Obstetric & Gynaecologic DiseasesBeijingChina
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Dan Guo
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Lu R, Tang P, Zhang D, Lin S, Li H, Feng X, Sun M, Zhang H. SOX9/NFIA promotes human ovarian cancer metastasis through the Wnt/β-catenin signaling pathway. Pathol Res Pract 2023; 248:154602. [PMID: 37315400 DOI: 10.1016/j.prp.2023.154602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
To our knowledge, Sex-determining Region Y box 9 (SOX9) has been in connection with a wide range of human cancers. Nevertheless, there remains uncertainty regarding SOX9's role in metastasizing ovarian cancer. In our study, SOX9 was investigated in relation to tumor metastasis in ovarian cancer as well as its potential molecular mechanisms. First, we exhibited an apparent higher expression of SOX9 in ovarian cancer tissues and cells than in normative ones, and the prognosis of patients whose SOX9 levels were high was markedly lower than that of patients whose SOX9 levels were low. Besides, highly expressed SOX9 was correlated with high grade serous carcinoma, poor tumor differentiation, high serum CA125 and lymph node metastasis. Second, SOX9 knockdown exhibited striking inhibition of the migration and invasive ability of ovarian cancer cells, whereas SOX9 overexpression had an inverse role. At the same time, SOX9 could promote ovarian cancer intraperitoneal metastasis in a nude mice in the vivo. In a similar way, SOX9 knockdown dramatically decreased the expression of nuclear factor I-A (NFIA), β-catenin as well as N-cadherin but had an increased in E-cadherin expression, as opposed to the results when SOX9 was overexpressed. Furthermore, NFIA silencing inhibited the expression of NFIA, β-catenin and N-cadherin, in the same way that E-cadherin expression was promoted. In conclusion, this study shows that SOX9 has a promotional effect on human ovarian cancer and that SOX9 promotes the metastasis of tumors by upregulating NFIA and activating on a Wnt/β-catenin signal pathway. SOX9 could be a novel focus for earlier diagnosis, therapy and prospective evaluation in ovarian cancer.
Collapse
Affiliation(s)
- Rong Lu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 Jiangsu Province, China; Department of Gynecology and Obstetrics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Peipei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an 223003 Jiangsu Province, China
| | - Di Zhang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an 223003 Jiangsu Province, China
| | - Sen Lin
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Hong Li
- Department of Pathology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Xian Feng
- Department of Pathology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Meiling Sun
- Department of Gynecology and Obstetrics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 Jiangsu Province, China.
| |
Collapse
|
4
|
Stroot IA, Brouwer J, Bart J, Hollema H, Stommel-Jenner DJ, Wagner MM, van Doorn HC, de Hullu JA, Gaarenstroom KN, Beurden M, van Lonkhuijzen LR, Slangen BF, Zweemer RP, Gómez Garcia EB, Ausems MG, Boere IA, van Engelen K, van Asperen CJ, Schmidt MK, Wevers MR, de Bock GH, Mourits MJ. High-Grade Serous Carcinoma at Risk-Reducing Salpingo-Oophorectomy in Asymptomatic Carriers of BRCA1/2 Pathogenic Variants: Prevalence and Clinical Factors. J Clin Oncol 2023; 41:2523-2535. [PMID: 36809028 PMCID: PMC10414703 DOI: 10.1200/jco.22.01237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To investigate the prevalence of and clinical factors associated with high-grade serous carcinoma (HGSC) at risk-reducing salpingo-oophorectomy (RRSO) in asymptomatic BRCA1/2-pathogenic variant (PV) carriers. PATIENTS AND METHODS We included BRCA1/2-PV carriers who underwent RRSO between 1995 and 2018 from the Hereditary Breast and Ovarian cancer in the Netherlands study. All pathology reports were screened, and histopathology reviews were performed for RRSO specimens with epithelial abnormalities or where HGSC developed after normal RRSO. We then compared clinical characteristics, including parity and oral contraceptive pill (OCP) use, for women with and without HGSC at RRSO. RESULTS Of the 2,557 included women, 1,624 had BRCA1, 930 had BRCA2, and three had both BRCA1/2-PV. The median age at RRSO was 43.0 years (range: 25.3-73.8) for BRCA1-PV and 46.8 years (27.6-77.9) for BRCA2-PV carriers. Histopathologic review confirmed 28 of 29 HGSCs and two further HGSCs from among 20 apparently normal RRSO specimens. Thus, 24 (1.5%) BRCA1-PV and 6 (0.6%) BRCA2-PV carriers had HGSC at RRSO, with the fallopian tube identified as the primary site in 73%. The prevalence of HGSC in women who underwent RRSO at the recommended age was 0.4%. Among BRCA1/2-PV carriers, older age at RRSO increased the risk of HGSC and long-term OCP use was protective. CONCLUSION We detected HGSC in 1.5% (BRCA1-PV) and 0.6% (BRCA2-PV) of RRSO specimens from asymptomatic BRCA1/2-PV carriers. Consistent with the fallopian tube hypothesis, we found most lesions in the fallopian tube. Our results highlight the importance of timely RRSO with total removal and assessment of the fallopian tubes and show the protective effects of long-term OCP.
Collapse
Affiliation(s)
- Iris A.S. Stroot
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Brouwer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost Bart
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Marise M. Wagner
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Helena C. van Doorn
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joanne A. de Hullu
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katja N. Gaarenstroom
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marc Beurden
- Department of Gynecology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Luc R.C.W. van Lonkhuijzen
- Department of Gynecologic Oncology, Amsterdam University Medical Center-Center for Gynecological Oncology Amsterdam, Amsterdam, the Netherlands
| | - Brigitte F.M. Slangen
- Department of Gynecology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ronald P. Zweemer
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Encarna B. Gómez Garcia
- Department of Clinical Genetics, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Margreet G.E.M. Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Klaartje van Engelen
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Christi J. van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjanka K. Schmidt
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marijke R. Wevers
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geertruida H. de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marian J.E. Mourits
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON), Coordinating Center: Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Tang YL, Li GS, Li DM, Tang D, Huang JZ, Feng H, He RQ, Huang ZG, Dang YW, Kong JL, Gan TQ, Zhou HF, Zeng JJ, Chen G. The clinical significance of integrin subunit alpha V in cancers: from small cell lung carcinoma to pan-cancer. BMC Pulm Med 2022; 22:300. [PMID: 35927660 PMCID: PMC9354352 DOI: 10.1186/s12890-022-02095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the relationship between integrin subunit alpha V (ITGAV) and cancers, including small cell lung cancer (SCLC). METHODS Using large sample size from multiple sources, the clinical roles of ITGAV expression in SCLC were explored using differential expression analysis, receiver operating characteristic curves, Kaplan-Meier curves, etc. RESULTS: Decreased mRNA (SMD = - 1.05) and increased protein levels of ITGAV were detected in SCLC (n = 865). Transcription factors-ZEB2, IK2F1, and EGR2-may regulate ITGAV expression in SCLC, as they had ChIP-Seq (chromatin immunoprecipitation followed by sequencing) peaks upstream of the transcription start site of ITGAV. ITGAV expression made it feasible to distinguish SCLC from non-SCLC (AUC = 0.88, sensitivity = 0.78, specificity = 0.84), and represented a risk role in the prognosis of SCLC (p < 0.05). ITGAV may play a role in cancers by influencing several immunity-related signaling pathways and immune cells. Further, the extensive pan-cancer analysis verified the differential expression of ITGAV and its clinical significance in multiple cancers. CONCLUSION ITGAV served as a potential marker for prognosis and identification of cancers including SCLC.
Collapse
Affiliation(s)
- Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jie-Zhuang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|