1
|
Liu T, Xu J, Zhang QX, Huang YJ, Wang W, Fu Z. Inhibiting the expression of spindle appendix cooled coil protein 1 can suppress tumor cell growth and metastasis and is associated with cancer immune cells in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0302312. [PMID: 39196978 PMCID: PMC11356440 DOI: 10.1371/journal.pone.0302312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Moreover, the biological roles, molecular mechanisms, and protein networks involved in SPDL1 were identified using machine learning and bioinformatics. The cell counting kit-8 assay, EdU staining, and transwell assay were used to investigate the effects of inhibiting SPDL1 expression on ESCC cell proliferation, migration, and invasion. Finally, the correlation between the SPDL1 expression and cancer immune infiltrating cells was evaluated by analyzing data from the TCGA database. Results showed that SPDL1 was overexpressed in the ESCC tissues. The SPDL1 expression was related to age in patients with ESCC. The SPDL1 co-expressed genes included those involved in cell division, cell cycle, DNA repair and replication, cell aging, and other processes. The high-risk scores of SPDL1-related long non-coding RNAs were significantly correlated with overall survival and cancer progression in patients with ESCC (P < 0.05). Inhibiting the SPDL1 expression was effective in suppressing the proliferation, migration, and invasion of ESCC TE-1 cells (P < 0.05). The overexpression of SPDL1 was positively correlated with the levels of Th2 and T-helper cells, and was negatively correlated with the levels of plasmacytoid dendritic cells and mast cells. In conclusion, SPDL1 was overexpressed in ESCC and was associated with immune cells. Further, inhibiting the SPDL1 expression could effectively slow down cancer cell growth and migration. SPDL1 is a promising biomarker for treating patients with ESCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Xu
- Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yan-Jiao Huang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Zhu Fu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
2
|
Zhai Y, Wu F, Xu X, Zhao P, Xin L, Li M, Zong Y, Yang Z, Li Z, Wang L, Chen B. Silencing of spindle apparatus coiled-coil protein 1 suppressed the progression of hepatocellular carcinoma through farnesyltransferase-beta and increased drug sensitivity. Heliyon 2024; 10:e34484. [PMID: 39148981 PMCID: PMC11324819 DOI: 10.1016/j.heliyon.2024.e34484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the major cause of cancer-associated mortality worldwide. Despite great advances have been made on the treatment of HCC, the survival rate of patients remains poor. Spindle apparatus coiled-coil protein 1 (SPDL1) is involved in the development of various cancers in humans. However, the role of SPDL1 in HCC remains unclear. In this study, we found high expression of SPDL1 in HCC tissues as compared to normal samples. In vitro, silencing of SPDL1 induced HCC cell apoptosis, and suppressed HCC cell propagation and migration. In vivo, knockdown of SPDL1 inhibited the tumor growth of HCC cells. These findings indicated the tumor-promoting role of SPDL1 in HCC. Mechanistically, we identified farnesyltransferase-beta (FNTB) as the downstream target protein of SPDL1 based on immunoprecipitation and mass spectrometry, which were confirmed by western blotting. Rescue assay determined that FNTB played a tumor promoting role in SPDL1-trigger HCC cell growth. Overexpression of FNTB recovered HCC cell viability and migration in SPDL1 knockdown cells. We also found that silencing of SPDL1 increased the sensitivity of Huh7 cells to sorafenib and lenvatinib, suggesting that SPDL1 is a new therapeutic target in HCC. Collectivity, the present study identified a new axis SPDL1/FNTB involved in the progression of HCC. Hence, SPDL1/FNTB is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pan Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lingxia Xin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengyuan Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Zong
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuanbo Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuoran Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
3
|
Feng Y, Tang D, Wang J. Emerging role and function of SPDL1 in human health and diseases. Open Med (Wars) 2024; 19:20240922. [PMID: 38623460 PMCID: PMC11017184 DOI: 10.1515/med-2024-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 04/17/2024] Open
Abstract
SPDL1 (spindle apparatus coiled-coil protein 1), also referred to as CCDC99, is a recently identified gene involved in cell cycle regulation. SPDL1 encodes a protein, hSpindly, which plays a critical role in the maintenance of spindle checkpoint silencing during mitosis. hSpindly coordinates microtubule attachment by promoting kinesin recruitment and mitotic checkpoint signaling. Moreover, the protein performs numerous biological functions in vivo and its aberrant expression is closely associated with abnormal neuronal development, pulmonary interstitial fibrosis, and malignant tumor development. In this review, we provide an overview of studies that reveal the characteristics of SPDL1 and of the protein encoded by it, as well as its biological and tumor-promoting functions.
Collapse
Affiliation(s)
- Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
4
|
Li CY, Chou TF, Lo YL. An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol 2024; 254:127905. [PMID: 37939778 DOI: 10.1016/j.ijbiomac.2023.127905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-β/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.
Collapse
Affiliation(s)
- Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
5
|
Wusiman D, Li W, Guo L, Huang Z, Zhang Y, Zhang X, Zhao X, Li L, An Z, Li Z, Ying J, An C. Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma. Heliyon 2023; 9:e22656. [PMID: 38125461 PMCID: PMC10731009 DOI: 10.1016/j.heliyon.2023.e22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature (BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in four independent datasets. The multivariate Cox regression analysis identified the signature as an independent prognostic factor. A prognostic nomogram was constructed with independent prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying signaling pathways related to this signature. Study of immune profiles showed that patients in the low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk group was featured by higher TCR and BCR diversity, which suggested that low-risk patients may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM-3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to interpret the responses to immunotherapy and provide a new perspective for future research on the treatment in HNSC.
Collapse
Affiliation(s)
- Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zehao Huang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zhao
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhengjiang Li
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
6
|
Pan YQ, Xiao Y, Li Z, Tao L, Chen G, Zhu JF, Lv L, Liu JC, Qi JQ, Shao A. Comprehensive analysis of the significance of METTL7A gene in the prognosis of lung adenocarcinoma. Front Oncol 2022; 12:1071100. [PMID: 36620541 PMCID: PMC9817104 DOI: 10.3389/fonc.2022.1071100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Background The most common subtype of lung cancer, called lung adenocarcinoma (LUAD), is also the largest cause of cancer death in the world. The aim of this study was to determine the importance of the METTL7A gene in the prognosis of patients with LUAD. Methods This particular study used a total of four different LUAD datasets, namely TCGA-LUAD, GSE32863, GSE31210 and GSE13213. Using RT-qPCR, we were able to determine METTL7A expression levels in clinical samples. Univariate and multivariate Cox regression analyses were used to identify factors with independent effects on prognosis in patients with LUAD, and nomograms were designed to predict survival in these patients. Using gene set variation analysis (GSVA), we investigated differences in enriched pathways between METTL7A high and low expression groups. Microenvironmental cell population counter (MCP-counter) and single-sample gene set enrichment analysis (ssGSEA) methods were used to study immune infiltration in LUAD samples. Using the ESTIMATE technique, we were able to determine the immune score, stromal score, and estimated score for each LUAD patient. A competing endogenous RNA network, also known as ceRNA, was established with the help of the Cytoscape program. Results We detected that METTL7A was down-regulated in pan-cancer, including LUAD. The survival study indicates that METTL7A was a protective factor in the prognosis of LUAD. The univariate and multivariate Cox regression analyses revealed that METTL7A was a robust independent prognostic indicator in survival prediction. Through the use of GSVA, several immune-related pathways were shown to be enriched in both the high-expression and low-expression groups of METTL7A. Analysis of the tumor microenvironment revealed that the immune microenvironment of the group with low expression was suppressed, which may be connected to the poor prognosis. To explore the ceRNA regulatory mechanism of METTL7A, we finally constructed a regulatory network containing 1 mRNA, 2 miRNAs, and 5 long non-coding RNAs (lncRNAs). Conclusion In conclusion, we presented METTL7A as a potential and promising prognostic indicator of LUAD. This biomarker has the potential to offer us with a comprehensive perspective of the prediction of prognosis and treatment for LUAD patients.
Collapse
Affiliation(s)
- Ya-Qiang Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhua Li
- Department of Thoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Long Tao
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ge Chen
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jing-Feng Zhu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jun-Qing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - AiZhong Shao
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China,*Correspondence: AiZhong Shao,
| |
Collapse
|