1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Huang L, Zhao X, Zhang J, Zhang J, Liao W, Fan Y, Tang J, He Z, Gao F, Ouyang W. Study on the therapeutic effect and some immune factors by methotrexate modified superparamagnetic nanoparticles in rat mammary tumors. NANOSCALE ADVANCES 2025; 7:601-613. [PMID: 39650616 PMCID: PMC11622858 DOI: 10.1039/d4na00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024]
Abstract
Objective: this study investigates the efficacy, immunological impact, and preliminary safety of methotrexate (MTX) modified magnetic Fe3O4 nanoparticles in thermochemotherapy for mammary tumors in rats. Methods: transmission electron microscopy images revealed that the MTX-modified magnetic Fe3O4 nanoparticles are nearly spherical, approximately 10 nm in diameter. Chemically co-precipitated PEI-modified magnetic nanoparticles were utilized for thermotherapy, while MTX-modified nanoparticles were employed for thermochemotherapy. These nanoparticles were locally injected into the Walker-256 tumor tissues of Wistar rats. The experimental design included twelve groups, encompassing various protocols of thermotherapy and thermochemotherapy at 47 °C and 42 °C, a group receiving only MTX nanoparticle chemotherapy, and several control groups. The biodistribution of residual magnetic nanoparticles was assessed in vital organs such as the heart, liver, lungs, kidneys, and brain. Results: demonstrated that these magnetic nanoparticles primarily accumulated in the tumor's central region and were unevenly distributed at the margins. The nanoparticles were capable of penetrating tumor cells but were more dispersed around them. Importantly, no residual magnetic nanoparticles were detected in vital organs. Significant tumor reduction and prolonged survival times were observed in the 47 °C thermochemotherapy group, the 47 °C thermotherapy group and the repeated 42 °C thermochemotherapy group. Additionally, significant increases in IL-2 and IFN-γ levels, along with a decrease in IL-4 levels, were detected in the 47 °C thermochemotherapy and 47 °C thermotherapy groups. Conclusion: MTX-modified Fe3O4 magnetic nanoparticles demonstrate potential as an effective medium for thermochemotherapy. They are safe, tolerable, contribute to prolonged survival, and enhance immune functions in tumor-bearing rats without leaving residues in vital organs. These results provide a promising foundation for future cancer treatment research.
Collapse
Affiliation(s)
- Li Huang
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and the Affiliated of Cancer Hospital of Guizhou Medical University Guiyang 550004 China
| | - Xing Zhao
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University Guiyang 550004 China
| | - Jun Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University and The Affiliated of Cancer Hospital of Guizhou Medical University Guiyang 550004 China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University Guiyang 550004 China
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University Guiyang 550004 China
| | - Yanhua Fan
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University Guiyang 550004 China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Institute of Medical Physics and Engineering, Department of Engineering Physics, Tsinghua University Beijing 100083 China
| | - Zhixu He
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University Guiyang 550004 China
| | - Fuping Gao
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Institute of Medical Physics and Engineering, Department of Engineering Physics, Tsinghua University Beijing 100083 China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and the Affiliated of Cancer Hospital of Guizhou Medical University Guiyang 550004 China
| |
Collapse
|
3
|
Kundu S, Jit BP, Sharma A. Pan-cancer TCGA analysis reveals the potential involvement of B-type lamins in dysregulating chromosome segregation in human cancer. Mamm Genome 2024:10.1007/s00335-024-10086-9. [PMID: 39592474 DOI: 10.1007/s00335-024-10086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Lamins play a crucial role in maintaining nuclear structure and function. Our study investigates the expression patterns and clinical implications of B-type lamins with a special focus on lamin B2 across various cancer types using comprehensive RNA sequencing datasets. We found that high expression levels of lamin B1 and lamin B2 are associated with decreased overall and disease-free survival in cancer. This association is further pronounced when both lamins are co-expressed, indicating a compounded negative impact on patient prognosis. Additionally, we highlighted the relationship between B-type lamins and the tumor microenvironment. Lamin B1 mRNA expression shows a strong positive correlation with activated CD4+ T-cells and type 2 T-helper cells (Th2), suggesting its role in immune cell infiltration and response within tumors. Lamin B2 expression also correlates moderately with these immune cells, indicating a potential but lesser role in modulating the immune landscape. Notably, the epigenetic state of lamin B1 significantly affects the tumor microenvironment, suggesting a dual role in structural integrity and immune modulation. We have identified 9 lamin B2 interacting proteins that are co-expressed with B-type lamins in cancerous conditions and modulate cytokinesis and cell division pathways during tumorigenesis. Furthermore, we have identified specific molecular targets of B-type lamins that co-express with them in a range of human cancers and are potentially involved in dysregulating chromosome segregation and mRNA binding. Overexpression of these targets alongside B-type lamins correlates with poor prognosis in multiple cancers. These findings underscore the potential of B-type lamins as biomarkers for poor prognosis and as targets for cancer therapies.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
- National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, Haryana, India.
| |
Collapse
|
4
|
Lin XT, Luo YD, Mao C, Gong Y, Hou Y, Zhang LD, Gu YP, Wu D, Zhang J, Zhang YJ, Tan DH, Xie CM. Integrated ubiquitomics characterization of hepatocellular carcinomas. Hepatology 2024:01515467-990000000-01044. [PMID: 39348425 DOI: 10.1097/hep.0000000000001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND AND AIMS Patients with aggressive HCC have limited therapeutic options. Therefore, a better understanding of HCC pathogenesis is needed to improve treatment. Genomic studies of HCC have improved our understanding of cancer biology. However, the ubiquitomic characteristics of HCC remain poorly understood. We aimed to reveal the ubiquitomic characteristics of HCC and provide clinical feature biomarkers of the aggressive HCC that may be used for diagnosis or therapy in the clinic. APPROACH AND RESULTS The comprehensive proteomic, phosphoproteomic, and ubiquitomic analyses were performed on tumors and adjacent normal liver tissues from 85 patients with HCC. HCCs displayed overexpression of drugable targets CBR1-S151 and CPNE1-S55. COL4A1, LAMC1, and LAMA4 were highly expressed in the disease free survival-poor patients. Phosphoproteomic and ubiquitomic features of HCC revealed cross talk in metabolism and metastasis. Ubiquitomics predicted diverse prognosis and clarified HCC subtype-specific proteomic signatures. Expression of biomarkers TUBA1A, BHMT2, BHMT, and ACY1 exhibited differential ubiquitination levels and displayed high prognostic risk scores, suggesting that targeting these proteins or their modified forms may be beneficial for future clinical treatment. We validated that TUBA1A K370 deubiquitination drove severe HCC and labeled an aggressive subtype of HCCs. TUBA1A K370 deubiquitination was at least partly attributed to protein kinase B-mediated USP14 activation in HCC. Notably, targeting AKT-USP14-TUBA1A complex promoted TUBA1A degradation and blocked liver tumorigenesis in vivo. CONCLUSIONS This study expands our knowledge of ubiquitomic signatures, biomarkers, and potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xiao-Tong Lin
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan-Deng Luo
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, General Hospital of Xinjiang Military Region, Urumchi, Xinjiang, China
| | - Cui Mao
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Gong
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Hou
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lei-Da Zhang
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong-Peng Gu
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu-Jun Zhang
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - De-Hong Tan
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan-Ming Xie
- Department of Hepatobiliary Surgery, Key Laboratory of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Aravind A, Mathew RT, Kuruba L, Vijayakumar M, Prasad TSK. Proteomic analysis of peripheral blood mononuclear cells from OSCC patients reveals potential immune checkpoints to enable personalized treatment. Mol Omics 2024. [PMID: 39177064 DOI: 10.1039/d4mo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, with high mortality and prevalence rates. OSCC is defined as an immunogenic tumor with the potential to be recognized and targeted by the immune system. It is characterized by the extensive infiltration of immune cells and plays a vital role in tumorigenesis. Peripheral blood mononuclear cells (PBMC) are a functional subset of immune cells readily accessible through minimally invasive procedures. The molecular characterization of immune cells aids in understanding their functional roles in various pathophysiological conditions. Proteomic analysis of PBMCs from cancer patients provides insight into the mechanism of immunoregulation and the role of immune cells in impeding tumor development and progression. Therefore, the present study investigated the immune cell proteome of a cancer control cohort within OSCC, leveraging data-independent acquisition analysis by mass spectrometry (DIA-MS). Among the differentially abundant proteins in OSCC, we identified promising molecular targets, including LMNB1, CTSB, CD14, CD177, and SPI1. Further exploration of the signaling pathways related to the candidate molecules demonstrated their involvement in cancer immunomodulation. Therefore, this study can serve as a platform for identifying new candidate proteins to further investigate their potential as immunotherapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | - Lepakshi Kuruba
- Department of Medical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka - 575018, India.
| | | |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Huang K, Ma T, Li Q, Zhong Z, Zhou Y, Zhang W, Qin T, Tang S, Zhong J, Lu S. Novel polymorphisms in CYP4A22 associated with susceptibility to coronary heart disease. BMC Med Genomics 2024; 17:66. [PMID: 38438909 PMCID: PMC10913669 DOI: 10.1186/s12920-024-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) has become a worldwide public health problem. Genetic factors are considered important risk factors for CHD. The aim of this study was to explore the correlation between CYP4A22 gene polymorphism and CHD susceptibility in the Chinese Han population. METHODS We used SNPStats online software to complete the association analysis among 962 volunteers. False-positive report probability analysis was used to confirm whether a positive result is noteworthy. Haploview software and SNPStats were used for haplotype analysis and linkage disequilibrium. Multi-factor dimensionality reduction was applied to evaluate the interaction between candidate SNPs. RESULTS In overall and some stratified analyses (male, age ≤ 60 years or CHD patients complicated with hypertension), CYP4A22-rs12564525 (overall, OR = 0.83, p-value is 0.042) and CYP4A22-rs2056900 (overall, OR = 1.22, p-value is 0.032) were associated with the risk of CHD. CYP4A22-4926581 was associated with increased CHD risk only in some stratified analyses. FPRP indicated that all positive results in our study are noteworthy findings. In addition, MDR showed that the single-locus model composed of rs2056900 is the best model for predicting susceptibility to CHD. CONCLUSION There are significant associations between susceptibility to CHD and CYP4A22 rs12564525, and rs2056900.
Collapse
Affiliation(s)
- Kang Huang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Tianyi Ma
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Qiang Li
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Zanrui Zhong
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Yilei Zhou
- Medical College, Jingchu University of Technology, Jingmen, Hubei, China
| | - Wei Zhang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Ting Qin
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Shilin Tang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Jianghua Zhong
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China.
| | - Shijuan Lu
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China.
| |
Collapse
|
8
|
Huang Y, Zhang L, Liu T, Liang E. LMNB1 targets FOXD1 to promote progression of prostate cancer. Exp Ther Med 2023; 26:513. [PMID: 37840569 PMCID: PMC10570766 DOI: 10.3892/etm.2023.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 10/17/2023] Open
Abstract
Forkhead box D1 (FOXD1) expression is upregulated in various types of human cancer. To the best of our knowledge, the roles of FOXD1 in prostate cancer (PC) remain largely unknown. The Cancer Genome Atlas dataset was used for the bioinformatics analysis of FOXD1 in PC. FOXD1 expression levels in normal immortalized human prostate epithelial cells (RWPE-1) and prostate cancer cells were detected by reverse transcription-quantitative PCR. PC cell viability was detected using Cell Counting Kit-8 assay. Transwell assays were performed to assess the migration and invasion of PC cells. Luciferase reporter gene assay was used to validate the association between FOXD1 and lamin (LMN)B1. LMNB1 is an important part of the cytoskeleton, which serves an important role in the process of tumor occurrence and development, regulating apoptosis and DNA repair. FOXD1 expression was upregulated in PC tissues, with its high expression being associated with clinical stage and survival in PC. Knockdown of FOXD1 inhibited viability, migration and invasion of PC cells. FOXD1 positively regulated LMNB1 expression. The effect of FOXD1 knockdown on PC cells was reversed by LMNB1 overexpression. In conclusion, FOXD1, positively regulated by LMNB1, served as an oncogene in PC and may be a potential biomarker and treatment target for PC.
Collapse
Affiliation(s)
- Yuanshe Huang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Lai Zhang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Tianlei Liu
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - E Liang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| |
Collapse
|
9
|
Zhong M, Gong L, Li N, Guan H, Gong K, Zhong Y, Zhu E, Wang X, Jiang S, Li J, Lei Y, Liu Y, Chen J, Zheng Z. Pan-cancer analysis of kinesin family members with potential implications in prognosis and immunological role in human cancer. Front Oncol 2023; 13:1179897. [PMID: 37711200 PMCID: PMC10498125 DOI: 10.3389/fonc.2023.1179897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Kinesin is a molecular motor for transporting "goods" within cells and plays a key role in many types of tumors. The multi-angle study of kinesin at the pan-cancer level is conducive to understanding its role in tumorigenesis and development and clinical treatment potential. Methods We evaluated the expression of KIF genes, performed differential analysis by using the R package limma, and explored the pan-cancer prognosis of KIF genes by univariate Cox regression analysis. To evaluate the pan-cancer role of KIF genes as a whole, we defined the KIFscore with the help of gene set variation analysis (GSVA) and explored the KIFscores across normal tissues, tumor cell lines, and 33 tumor types in TCGA. Next, we used spearman correlation analysis to extensively study the correlation between the KIFscore and tumor prognosis and be-tween the KIFscore and clinical indicators. We also identified the relationship between the KIFscore and genomic variation and immune molecular signatures by multiplatform analysis. Finally, we identified the key genes in clear cell renal cell carcinoma (ccRCC) through machine learning algorithms and verified the candidate genes by CCK8, wound healing assay, Transwell assay, and flow cytometry. Results In most cancers, KIFscores are high and they act as a risk factor for cancer. The KIFscore was significantly associated with copy number variation (CNV), tumor mutation burden (TMB), immune subtypes, DNA repair deficiency, and tumor stemness indexes. Moreover, in almost all cancer species, the KIFscore was positively correlated with T cell CD4+ TH2, the common lymphoid pro-genitor, and the T cell follicular helper. In addition, it was negatively correlated with CXCL16, CCL14, TNFSF13, and TNFRSF14 and positively correlated with ULBP1, MICB, and CD276. Machine learning helped us to identify four hub-genes in ccRCC. The suitable gene, KIF14, is highly expressed in ccRCC and promotes tumor cell proliferation, migration, and invasion. Conclusion Our study shows that the KIF genes play an important pan-cancer role and may become a potential new target for a variety of tumor treatments in the future. Furthermore, KIF14, a key molecule in the KIF genes, can provide a new idea for the ccRCC treatment.
Collapse
Affiliation(s)
- Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lian Gong
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kai Gong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Yong Zhong
- Department of Clinical Medicine, Hubei Enshi College, Enshi, China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
11
|
Gong L, Zhong M, Gong K, Wang Z, Zhong Y, Jin Y, Chen H, Tai P, Chen X, Chen A, Cao K. Multi-Omics Analysis and Verification of the Oncogenic Value of CCT8 in Pan-Cancers. J Inflamm Res 2023; 16:2297-2315. [PMID: 37273485 PMCID: PMC10238552 DOI: 10.2147/jir.s403499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 06/06/2023] Open
Abstract
Background Chaperonin-containing TCP1 subunit 8 (CCT8) has been proved to be involved in the occurrence and development of some cancers. However, no study has reported the potential role of CCT8 in a pan-cancer manner. Methods TIMER2.0, GEPIA2, UALCAN and Sangerbox were used to explore the expression, prognosis and methylation of CCT8. We used cBioPortal, TISIDB, SangerBox, TIMER2.0 and TISMO to investigate the genetic alteration of CCT8 and the relationship of CCT8 with molecular subtype, immune subtype, immune infiltration and immunotherapy response. CCT8-related genes were screened out through GEPIA and STRING for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. CCK-8, the colony formation assay, the wound healing assay and the Transwell assay were performed to explore the influence of CCT8 on proliferation and migration. Results CCT8 was highly expressed in most cancers with a poor prognosis. The expression level of CCT8, which was affected by the promoter region methylation and genetic alteration, was related to the molecular and immune subtype of cancers. Interestingly, CCT8 was positively associated with the activated CD4 T cells and type 2 T-helper cells. CCT8 played a vital role in the cell cycle and RNA transport of cancers, and it significantly inhibited the proliferation and migration of lung adenocarcinoma cells when it was knocked down. Conclusion CCT8 plays an indispensable role in promoting the proliferation and migration of many cancers. CCT8 might be a biomarker of T-helper type 2 (Th2) cell infiltration and a promising therapeutic target for T-helper type 1(Th1)/Th2 imbalance.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Kai Gong
- Department of Clinical Medicine, Xiangnan University, Chenzhou, People’s Republic of China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Yong Zhong
- Department of Clinical Medicine, Hubei Enshi College, Enshi, People’s Republic of China
| | - Yi Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| |
Collapse
|
12
|
Dong J, Ru Y, Zhai L, Gao Y, Guo X, Chen B, Lv X. LMNB1 deletion in ovarian cancer inhibits the proliferation and metastasis of tumor cells through PI3K/Akt pathway. Exp Cell Res 2023; 426:113573. [PMID: 37003558 DOI: 10.1016/j.yexcr.2023.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor in gynecology. LMNB1 is an important component of the nuclear skeleton. The expression of LMNB1 in ovarian cancer is significantly higher than that in normal tissues, but its role in tumor still needs comprehensive investigation. In this study, we overexpressed and knocked down LMNB1 in ovarian cancer cells and explore the effect of LMNB1 on the cell proliferation, migration and the underlying mechanism. We analyzed the expression levels of LMNB1 in ovarian cancer and their clinical relevance by using bioinformatics methods, qRT-PCR, Western blot and immunohistochemistry. To state the effect and mechanism of LMNB1 on OC in vitro and in vivo, we performed mouse xenograft studies, CCK8, cloning formation, Edu incorporation, wound healing, transwell and flow cytometry assay in stable LMNB1 knockdown OC cells, following by RNA-seq. Overexpression of LMNB1 indicates the progression of OC. LMNB1 knockdown inhibited the proliferation and migration of OC cells by suppressing the FGF1-mediated PI3K-Akt signaling pathway. Our study shows LMNB1 as a novel prognostic factor and therapeutic target in OC.
Collapse
Affiliation(s)
- Jian Dong
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Lianghao Zhai
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Yunge Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Xin Guo
- Department of Endoscopic Surgery, Chinese People's Liberation Army 986th Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China.
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| |
Collapse
|
13
|
A Lamin Family-Based Signature Predicts Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4983532. [DOI: 10.1155/2022/4983532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background. Lamin family members play crucial roles in promoting oncogenesis and cancer development. The values of lamin family in predicting prognosis and immunotherapy response remain largely unclarified. Our research is aimed at comprehensively estimating the clinical significance of lamin family in hepatocellular carcinoma and constructing a novel lamin family-based signature to predict prognosis and guide the precise immunotherapy. Methods. The expression features and prognostic value of LMNA, LMNB1, and LMNB2 were explored in the TCGA and GEO databases. The biological functions of LMNB1 and LMNB2 were validated by in vitro assays. A lamin family-based signature was built using the TCGA training set. The TCGA test set, entire TCGA set, and GSE14520 set were used to validate its predictive power. Univariate and multivariate analyses were performed to evaluate the independence of the lamin family-based signature from other clinicopathological characteristics. A nomogram was constructed using the lamin family-based signature and TNM stage. The associations of this signature with molecular pathways, clinical characteristics, immune cell infiltration, and immunotherapy response were analyzed. Results. Lamin family members were upregulated in HCC. Upregulation of LMNB1 and LMNB2 promoted HCC proliferation, migration, and invasion. The predictive signature was initially established based on LMNB1 and LMNB2 which could effectively identify differences in overall survival, immune cell infiltration, and clinicopathological characteristics of high- and low-risk patients. The nomogram showed high prognostic predictive accuracy. Importantly, the lamin family-based signature was correlated with immune suppression and expression of immune checkpoint molecules. Conclusions. The lamin family-based signature is a robust biomarker to predict overall survival and immunotherapy response in HCC. High-risk score patients have a poorer overall survival and might be more sensitive to immunotherapy. This signature may contribute to improving individualized prognosis prediction and precision immunotherapy for HCC patients.
Collapse
|