1
|
Li S, Cheng Y, Gao C, Yuan Q, Lu X. SEMA3C promotes thyroid cancer via the Wnt/β-catenin pathway. Exp Cell Res 2025; 444:114378. [PMID: 39667698 DOI: 10.1016/j.yexcr.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Semaphorin 3C (SEMA3C) regulates the progression of several tumors. However, the role of SEMA3C in thyroid cancer remains unknow. In the present study, SEMA3C was overexpressed or knocked down in thyroid cancer cell lines BCPAP and IHH-4. It was found that SEMA3C promoted the cell migration, invasion, and mesenchymal-epithelial transition (EMT) process. SEMA3C overexpression enhanced tumor cell stemness, while SEMA3C knockdown showed the opposite effects. In vivo experiments suggested that SEMA3C accelerated the tumor growth and metastasis. Moreover, SEMA3C enhanced β-catenin nuclear translocation. When cells were treated with Dickkopf-1 (DKK1), an inhibitor of Wnt/β-catenin pathway, the promoting effects of SEMA3C on cell migration and stemness were offset. Wnt/β-catenin pathway mediated the roles of SEMA3C in thyroid cancer. Additionally, an upstream regulator of SEMA3C was identified. E1A binding protein P300 (P300) was found to increase the histone three lysine 27 acetylation (H3K27ac) level of SEMA3C, promoting its transcriptional activation. Therefore, we clarify that SEMA3C exerts a tumor-promoting effect on thyroid cancer, and Wnt/β-catenin pathway is the critical downstream pathway.
Collapse
Affiliation(s)
- Shiwei Li
- Department of Otorhinolaryngology and Head-Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China
| | - Yanmei Cheng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China
| | - Changhui Gao
- Department of Otorhinolaryngology and Head-Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China
| | - Qingling Yuan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Shan H, Tian G, Zhang Y, Qiu Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biol Ther 2024; 25:2392341. [PMID: 39164192 PMCID: PMC11340766 DOI: 10.1080/15384047.2024.2392341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-β (TGF-β) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-β signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hui Shan
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Zhang D, Liang P, Wang Q, Xia B, Yu L, Hu X. NUF2 is associated with cancer stem cell characteristics and a potential drug target for prostate cancer. Front Mol Biosci 2024; 11:1481375. [PMID: 39703688 PMCID: PMC11656027 DOI: 10.3389/fmolb.2024.1481375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Background Cancer stem cells are characterized by self-renewal, clonal tumor initiation capacity, and treatment resistance, which play essential roles in the tumor progression of prostate cancer (PCa). In this study, we aim to explore the features of cancer stemness and characterize the expression of stem cell-related genes for PCa. Methods We downloaded RNA-seq data and related clinical information from The Cancer Genome Atlas (TCGA) database. The mRNA stemness index (mRNAsi) was analyzed for various clinical features, overall survival (OS), and disease-free survival (DFS), and a weighted gene co-expression network analysis (WGCNA) was performed to identify crucial gene modules and key genes, which may play a role in CSCs. The key gene functions were verified using multiple databases, including the TCGA and Gene Expression Omnibus database (GEO). Next, we explored the potential function of the modules and genes obtained using WGCNA using an enrichment analysis. Finally, we performed in vitro experiments for further verification. Results We found that mRNAsi were higher in PCa tissues than in normal tissues, and the mRNAsi were closely related to the clinical characteristics of PCa. A total of 16 key genes associated with the mRNAsi scores were identified by WGCNA analysis, including NCAPG, NEK2, DLGAP5, CENPA, CENPF, TPX2, GTSE1, KIF4A, NEIL3, CDC25C, UBE2C, CDCA5, MELK, SKA3, NUF2, and BIRC5. These genes were explicitly highly expressed in PCa across TCGA cancers and were validated in 3 independent GEO PCa datasets. The functional annotations of the key genes were linked with the cell proliferation processes. NUF2 may be a potential biomarker for PCa. In vitro experiments showed that knockdown NUF2 reduced the proliferation and migration of PCa cells. Conclusion The 16 key genes identified in this study significantly correlate with PCa stem cell characteristics and showed prognosis-oriented effects in PCa patients. Further, the NUF2 gene may be used as a drug target for treating PCa.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Pu Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Qi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Bowen Xia
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Liqian Yu
- Qingdao University Medical College, Qingdao, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Hou B, Wang X, He Z, Liu H. Integrative approach using network pharmacology, bioinformatics, and experimental methods to explore the mechanism of cantharidin in treating colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6745-6761. [PMID: 38507104 DOI: 10.1007/s00210-024-03041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cantharidin, a terpenoid produced by blister beetles, has been used in traditional Chinese medicine to treat various ailments and cancers. However, its biological activity, impact, and anticancer mechanisms remain unclear. The Cantharidin chemical gene connections were identified using various databases. The GSE21815 dataset was used to collect the gene expression information. Differential gene analysis and gene ontology analyses were performed. Gene set enrichment analysis was used to assess the activation of disease pathways. Weighted gene co-expression network analysis and differential analysis were used to identify illness-associated genes, examine differential genes, and discover therapeutic targets via protein-protein interactions. MCODE analysis of major subgroup networks was used to identify critical genes influenced by Cantharidin, examine variations in the expression of key clustered genes in colorectal cancer vs. control samples, and describe the subject operators. Single-cell GSE188711 dataset was preprocessed to investigate Cantharidin's therapeutic targets and signaling pathways in colorectal cancer. Single-cell RNA sequencing was utilized to identify 22 cell clusters and marker genes for two different cell types in each cluster. The effects of different Cantharidin concentrations on colorectal cancer cells were studied in vitro. One hundred and ninety-seven Cantharidin-associated target genes and 480 critical genes implicated in the development of the illness were identified. Cantharidin significantly inhibited the proliferation and migration of HCT116 cells and promoted apoptosis at certain concentrations. Patients on current therapy develop inherent and acquired resistance. Our study suggests that Cantharidin may play an anti-CRC role by modulating immune function.
Collapse
Affiliation(s)
- Benchao Hou
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Avenue, Wanli District, Nanchang, 330004, Jiangxi, China
| | - Zhijian He
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 Beijing East Road, Qingshanhu District, Nanchang, 330029, Jiangxi, China.
| | - Haiyun Liu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Avenue, Wanli District, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
5
|
Li R, Wang D, Yang H, Pu L, Li X, Yang F, Zhu R. Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncol Rep 2024; 51:77. [PMID: 38639175 DOI: 10.3892/or.2024.8736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non‑SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Dechun Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hong Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Leilei Pu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaohong Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Fumei Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rong Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Luo G, Cheng H, Fan J, Sun T. Up-regulation of NCAPG mediated by E2F1 facilitates the progression of osteosarcoma through the Wnt/β-catenin signaling pathway. Transl Cancer Res 2024; 13:2437-2450. [PMID: 38881929 PMCID: PMC11170535 DOI: 10.21037/tcr-23-2175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/25/2024] [Indexed: 06/18/2024]
Abstract
Background In recent years, there are few reports on non-SMC condensin I complex subunit G (NCAPG) in osteosarcoma. Our study aims to explore the biological role of NCAPG in osteosarcoma and its underlying molecular mechanism and to further clarify the reasons for the abnormal expression of NCAPG in osteosarcoma. Methods Here, we mined The Cancer Genome Atlas (TCGA) Program public database through bioinformatics methods, analyzed the differential expression of NCAPG in sarcoma tissue and normal tissue, and explored the relationship between NCAPG expression level and sarcoma tissue differentiation, including tumor recurrence, metastasis, and patient survival. Next, the transcription factors responsible for the abnormal expression of NCAPG in osteosarcoma tumors were predicted by multiple online website tools and verified via cellular experiments. Subsequently, loss of function and cell phenotype experiments were performed to confirm the effect of NCAPG on the malignant biological behavior of osteosarcoma cells. Mechanistically, by reviewing the literature, we found that NCAPG can affect the malignant progression of many solid tumors by regulating the Wnt/β-catenin signaling pathway. Therefore, we preliminarily investigated the potential effect of NCAPG on this pathway via western blot experiments in osteosarcoma. Results Increased expression of NCAPG was found in sarcoma compared to normal tissues, which was positively correlated with poor differentiation, metastasis, and poor prognosis. Combining the transcription factor prediction results, correlation analysis, and expression level in the TCGA public database with validation outcomes of in vitro cell assays, we found that E2F transcription factor 1 (E2F1) regulated the increased expression of NCAPG in osteosarcoma. The results of cell phenotype experiments showed that silencing NCAPG could inhibit the proliferation, migration, and invasion of osteosarcoma cells. The preliminary mechanistic investigation suggested that NCAPG may affect osteosarcoma progression through the Wnt/β-catenin pathway. Conclusions Our data reveal that E2F1 facilitates NCAPG expression in osteosarcoma by regulating the transcription of the NCAPG gene. Up-regulation of NCAPG promotes osteosarcoma progression via the Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Gan Luo
- Tianjin Medical University, Tianjin, China
| | | | - Jigeng Fan
- Tianjin Medical University, Tianjin, China
| | - Tianwei Sun
- Tianjin Medical University, Tianjin, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
7
|
Mai Y, Liao C, Wang S, Zhou X, Meng L, Chen C, Qin Y, Deng G. High glucose-induced NCAPD2 upregulation promotes malignant phenotypes and regulates EMT via the Wnt/β-catenin signaling pathway in HCC. Am J Cancer Res 2024; 14:1685-1711. [PMID: 38726276 PMCID: PMC11076239 DOI: 10.62347/hynz9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus (DM) is recognized as a risk factor for hepatocellular carcinoma (HCC). High glucose levels have been implicated in inducing epithelial-mesenchymal transition (EMT), contributing to the progression of various cancers. However, the molecular crosstalk remains unclear. This study aimed to elucidate the molecular mechanisms linking DM to HCC. Initially, the expression of NCAPD2 in HCC cells and patients was measured. A series of functional in vitro assays to examine the effects of NCAPD2 on the malignant behaviors and EMT of HCC under high glucose conditions were then conducted. Furthermore, the impacts of NCAPD2 knockdown on HCC proliferation and the β-catenin pathway were investigated in vivo. In addition, bioinformatics methods were performed to analyze the mechanisms and pathways involving NCAPD2, as well as its association with immune infiltration and drug sensitivity. The findings indicated that NCAPD2 was overexpressed in HCC, particularly in patients with DM, and its aberrant upregulation was linked to poor prognosis. In vitro experiments demonstrated that high glucose upregulated NCAPD2 expression, enhancing proliferation, invasion, and EMT, while knockdown of NCAPD2 reversed these effects. In vivo studies suggested that NCAPD2 knockdown might suppress HCC growth via the β-catenin pathway. Functional enrichment analysis revealed that NCAPD2 was involved in cell cycle regulation and primarily interacted with NCAPG, SMC4, and NCAPH. Additionally, NCAPD2 was positively correlated with EMT and the Wnt/β-catenin pathway, whereas knockdown of NCAPD2 inhibited the Wnt/β-catenin pathway. Moreover, NCAPD2 expression was significantly associated with immune cell infiltration, immune checkpoints, and drugs sensitivity. In conclusion, our study identified NCAPD2 as a novel oncogene in HCC and as a potential therapeutic target for HCC patients with DM.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of EducationNanning 530021, Guangxi, China
| | - Shengyu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Cuihong Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of EducationNanning 530021, Guangxi, China
| |
Collapse
|
8
|
Wang R, Yan Z. Cancer spreading patterns based on epithelial-mesenchymal plasticity. Front Cell Dev Biol 2024; 12:1259953. [PMID: 38665432 PMCID: PMC11043583 DOI: 10.3389/fcell.2024.1259953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Metastasis is a major cause of cancer-related deaths, underscoring the necessity to discern the rules and patterns of cancer cell spreading. Epithelial-mesenchymal plasticity contributes to cancer aggressiveness and metastasis. Despite establishing key determinants of cancer aggressiveness and metastatic ability, a comprehensive understanding of the underlying mechanism is unknown. We aimed to propose a classification system for cancer cells based on epithelial-mesenchymal plasticity, focusing on hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Methods: We extensively reviewed the concept of epithelial-mesenchymal plasticity, specifically considering the hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Results: In this review and hypothesis article, based on epithelial-mesenchymal plasticity, especially the hysteresis of epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype, we proposed a classification of cancer cells, indicating that cancer cells with epithelial-mesenchymal plasticity potential could be classified into four types: irreversible hysteresis, weak hysteresis, strong hysteresis, and hybrid epithelial/mesenchymal phenotype. These four types of cancer cells had varied biology, spreading features, and prognoses. Discussion: Our results highlight that the proposed classification system offers insights into the diverse behaviors of cancer cells, providing implications for cancer aggressiveness and metastasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
ZHANG XINFENG, LI SHUANG, SONG MEIRU, CHEN YUE, CHANG LIANGZHENG, LIU ZHERUI, DAI HONGYUAN, WANG YUTAO, YANG GANGQI, JIANG YUN, LU YINYING. Degradation of FAK-targeting by proteolytic targeting chimera technology to inhibit the metastasis of hepatocellular carcinoma. Oncol Res 2024; 32:679-690. [PMID: 38560575 PMCID: PMC10972732 DOI: 10.32604/or.2024.046231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/07/2023] [Indexed: 04/04/2024] Open
Abstract
Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.
Collapse
Affiliation(s)
- XINFENG ZHANG
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- Liver Tumor Diagnosis and Research Center, 5th Medical Center of the PLA General Hospital, Beijing, 100039, China
| | - SHUANG LI
- Liver Tumor Diagnosis and Research Center, 5th Medical Center of the PLA General Hospital, Beijing, 100039, China
| | - MEIRU SONG
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- Liver Tumor Diagnosis and Research Center, 5th Medical Center of the PLA General Hospital, Beijing, 100039, China
| | - YUE CHEN
- Department of Infection Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - LIANGZHENG CHANG
- Department of Infection Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - ZHERUI LIU
- 302 Clinical Medical School, Peking University, Beijing, China
| | - HONGYUAN DAI
- Department of Infection Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - YUTAO WANG
- 302 Clinical Medical School, Peking University, Beijing, China
| | - GANGQI YANG
- Department of Infection Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - YUN JIANG
- Cell and Gene Therapy Innovation Center, Beijing Lotuslake Biomedical, Science and Technology Park, Beijing, 102206, China
- State Key Laboratory of Chemical Oncogenomics and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - YINYING LU
- The PLA 307 Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- Liver Tumor Diagnosis and Research Center, 5th Medical Center of the PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
10
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Chen Y, Yang Y, Wang N, Liu R, Wu Q, Pei H, Li W. β-Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1-regulated Wnt/β-catenin pathway. J Cell Mol Med 2024; 28:e18072. [PMID: 38063438 PMCID: PMC10844700 DOI: 10.1111/jcmm.18072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
β-Sitosterol is a natural compound with demonstrated anti-cancer properties against various cancers. However, its effects on hepatocellular carcinoma (HCC) and the underlying mechanisms are not well understood. This study aims to investigate the impact of β-sitosterol on HCC. In this study, we investigated the effects of β-sitosterol on HCC tumour growth and metastasis using a xenograft mouse model and a range of molecular analyses, including bioinformatics, real-time PCR, western blotting, lentivirus transfection, CCK8, scratch and transwell assays. The results found that β-sitosterol significantly inhibits HepG2 cell proliferation, migration and invasion both in vitro and in vivo. Bioinformatics analysis identifies forkhead box M1 (FOXM1) as a potential target for β-sitosterol in HCC treatment. FOXM1 is upregulated in HCC tissues and cell lines, correlating with poor prognosis in patients. β-Sitosterol downregulates FOXM1 expression in vitro and in vivo. FOXM1 overexpression mitigates β-sitosterol's inhibitory effects on HepG2 cells. Additionally, β-sitosterol suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells, while FOXM1 overexpression promotes EMT. Mechanistically, β-sitosterol inhibits Wnt/β-catenin signalling by downregulating FOXM1, regulating target gene transcription related to HepG2 cell proliferation and metastasis. β-Sitosterol shows promising potential as a therapeutic candidate for inhibiting HCC growth and metastasis through FOXM1 downregulation and Wnt/β-catenin signalling inhibition.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yijun Yang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Nengyi Wang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Rui Liu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Qiuping Wu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Hua Pei
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Wenting Li
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
12
|
Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, Liu Y, Chang H, Zhang L, Cui H. Nonstructural maintenance of chromatin condensin I complex subunit G promotes the progression of glioblastoma by facilitating Poly (ADP-ribose) polymerase 1-mediated E2F1 transactivation. Neuro Oncol 2023; 25:2015-2027. [PMID: 37422706 PMCID: PMC10628937 DOI: 10.1093/neuonc/noad111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Nonstructural maintenance of chromatin condensin I complex subunit G (NCAPG), also known as non-structural maintenance of chromosomes condensin I complex subunit G, is mitosis-related protein that widely existed in eukaryotic cells. Increasing evidence has demonstrated that aberrant NCAPG expression was strongly associated with various tumors. However, little is known about the function and mechanism of NCAPG in glioblastoma (GBM). METHODS The expression and prognostic value of NCAPG were detected in the clinical databases and tumor samples. The function effects of NCAPG downregulation or overexpression were evaluated in GBM cell proliferation, migration, invasion, and self-renewal in vitro and in tumor growth in vivo. The molecular mechanism of NCAPG was researched. RESULTS We identified that NCAPG was upregulated in GBM and associated with poor prognosis. Loss of NCAPG suppressed the progression of GBM cells in vitro and prolonged survival in mouse models of GBM in vivo. Mechanistically, we revealed that NCAPG positively regulated E2F transcription factor 1 (E2F1) pathway activity. By directly interacting with Poly (ADP-ribose) polymerase 1, a co-activator of E2F1, and facilitating the PARP1-E2F1 interaction to activate E2F1 target gene expression. Intriguingly, we also discovered that NCAPG functioned as a downstream target of E2F1, which was proved by the ChIP and Dual-Luciferase results. Comprehensive data mining and immunocytochemistry analysis revealed that NCAPG expression was positively associated with the PARP1/E2F1 signaling axis. CONCLUSIONS Our findings indicate that NCAPG promotes GBM progression by facilitating PARP1-mediated E2F1 transactivation, suggesting that NCAPG is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Minghao Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yaqian Shao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuelian Weng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongbo Chang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Hebei Province, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Advanced Research Center in Brain Diseases, Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
13
|
Yuan Z, Ge L, Su P, Gu Y, Chen W, Cao X, Wang S, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. NCAPG Regulates Myogenesis in Sheep, and SNPs Located in Its Putative Promoter Region Are Associated with Growth and Development Traits. Animals (Basel) 2023; 13:3173. [PMID: 37893897 PMCID: PMC10603679 DOI: 10.3390/ani13203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ling Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengwei Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
14
|
Shi Y, Wang Y, Zhang W, Niu K, Mao X, Feng K, Zhang Y. N6-methyladenosine with immune infiltration and PD-L1 in hepatocellular carcinoma: novel perspective to personalized diagnosis and treatment. Front Endocrinol (Lausanne) 2023; 14:1153802. [PMID: 37469973 PMCID: PMC10352105 DOI: 10.3389/fendo.2023.1153802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/02/2023] [Indexed: 07/21/2023] Open
Abstract
Background Increasing evidence elucidated N6-methyladenosine (m6A) dysregulation participated in regulating RNA maturation, stability, and translation. This study aimed to demystify the crosstalk between m6A regulators and the immune microenvironment, providing a potential therapeutic target for patients with hepatocellular carcinoma (HCC). Methods Totals of 371 HCC and 50 normal patients were included in this study. GSE121248 and GSE40367 datasets were used to validate the expression of HNRNPC. The R package "ConsensusClusterPlus" was performed to screen consensus clustering types based on the expression of m6A regulators in HCC. The R package "pheatmap", "immunedeconv", "survival", "survminer" and "RMS" were applied to investigate the expression, immunity, overall survival, and clinical application in different clusters and expression groups. Comprehensive analysis of HNRNPC in pan-cancer was conducted by TIMER2 database. Besides, HNRNPC mRNA and protein expression were verified by qRT-PCR and immunohistochemistry analysis. Results Most of m6A regulators were over-expressed excerpt for ZC3H13 in HCC. Three independent clusters were screened based on m6A regulators expression, and the cluster 2 had a favorable prognosis in HCC. Then, the cluster 2 was positively expression in macrophage, hematopoietic stem cell, endothelial cell, and stroma score, while negatively in T cell CD4+ memory and mast cell. We identified HNRNPC was an independent prognostic factor in HCC, and nomogram performed superior application value for clinical decision making. Moreover, PD-L1 was significantly up-regulated in HCC tissues, cluster 1, and cluster 3, and we found PD-L1 expression was positively correlated with HNRNPC. Patients with HCC in high-expression groups was associated with tumor-promoting cells. Besides, HNRNPC was correlated with prognosis, TMB, and immune checkpoints in cancers. Particularly, the experiments confirmed that HNRNPC was positively expression in HCC cells and tissues. Conclusion The m6A regulators play irreplaceable roles in prognosis and immune infiltration in HCC, and the relationship of HNRNPC and PD-L1 possesses a promising direction for therapeutic targets of immunotherapy response. Exploration of m6A regulators pattern could be build the prognostic stratification of individual patients and move toward to personalized treatment.
Collapse
|
15
|
Lv Y, Wang W, Liu Y, Yi B, Chu T, Feng Z, Liu J, Wan X, Wang Y. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 2023:10.1007/s10585-023-10218-6. [PMID: 37326719 DOI: 10.1007/s10585-023-10218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.
Collapse
Affiliation(s)
- Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Wenhong Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Liu
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Zheng T, Qian T, Zhou H, Cheng Z, Liu G, Huang C, Dou R, Liu F, You X. Galectin-1-mediated high NCAPG expression correlates with poor prognosis in gastric cancer. Aging (Albany NY) 2023; 15:5535-5549. [PMID: 37335105 PMCID: PMC10333058 DOI: 10.18632/aging.204806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Galectin-1 (Gal1) and non-SMC condensin I complex, subunit G (NCAPG) are associated with metastasis in several malignant tumors. However, their precise roles in gastric cancer (GC) remain uncertain. This study explored the clinical significance and relationship of Gal1 and NCAPG in GC. Gal1 and NCAPG expressions were significantly up-regulated in GC compared to adjacent non-cancerous tissues by immunohistochemistry (IHC) and Western blotting. Besides, methods including stable transfection, quantitative real-time reverse transcription PCR, Western blotting, Matrigel invasion and wound-healing assays in vitro, were also conducted. IHC scores for Gal1 and NCAPG had a positive correlation in GC tissues. High Gal1 or NCAPG expression significantly correlated with poor prognosis in GC, and Gal1 combined with NCAPG had a synergetic effect on the prediction of GC prognosis. Gal1 overexpression in vitro enhanced NCAPG expression, cell migration, and invasion in SGC-7901 and HGC-27 cells. Simultaneous Gal1 overexpression and NCAPG knockdown in GC cells partly rescued the migrative and invasive abilities. Thus, Gal1 promoted GC invasion through increased NCAPG expression. The present study demonstrated the prognostic significance of the combination of Gal1 and NCAPG in GC for the first time.
Collapse
Affiliation(s)
- Tingrui Zheng
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Tao Qian
- Department of Anesthesiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Haihua Zhou
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Zhiyi Cheng
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Guiyuan Liu
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Chuanjiang Huang
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Rongrong Dou
- Department of the Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Fuxing Liu
- Department of the Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Xiaolan You
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| |
Collapse
|
17
|
Li W, Yang X, Liu X, Deng H, Li W, He X, Zhang W, Shen Y, Li X, Peng Q, Liu D. SETDB1 confers colorectal cancer metastasis by regulation of WNT/β-catenin signaling. Biochim Biophys Acta Gen Subj 2023; 1867:130377. [PMID: 37169209 DOI: 10.1016/j.bbagen.2023.130377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Metastasis is a critical step in tumor development; however, its specific molecular mechanism is still not fully understood. SETDB1 overexpression is associated with tumor progression and poor prognosis. Here, we explored a novel mechanism by which SETDB1 promotes tumor metastasis in colorectal cancer. METHODS We conducted database and clinical specimen analysis to determine the expression level of SETDB1 in colorectal cancer, as well as the prognosis of colorectal cancer with overexpressed SETDB1. We used wound healing assays, Transwell assays, and animal studies to study the effect of SETDB1 on colorectal cancer. We performed western blotting, qRT-PCR, immunofluorescence, and co-immunoprecipitation to explore the underlying associations between SETDB1 and β-catenin. We further used wound healing assays, Transwell assays, and animal studies to verify the relationship between SETDB1 and Wnt/β-catenin. RESULTS SETDB1 expression was upregulated in colorectal cancer and correlated with poor prognosis. Low expression of SETDB1 decreased invasion and metastasis in colorectal cancer. Low-expression of SETDB1 in colorectal tumor cells decreased β-catenin expression and its nuclear import. We also found that SETDB1 can bind and directly methylate β-catenin, Lastly, we discovered that this metastatic ability could be decreased by activating the Wnt/β-catenin pathway with SETDB1 knock-down. CONCLUSION SETDB1 is highly expressed in colorectal cancer and plays an important role in the invasion and metastasis through the Wnt/β-catenin pathway. It does so by direct methylation of β-catenin. This novel SETDB1/Wnt/β-catenin pathway provides a new strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Xi Yang
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiaowei Liu
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Hao Deng
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Wei Li
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Xiaohui He
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Wenbin Zhang
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Yisong Shen
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Xiang Li
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China
| | - Qiwang Peng
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China.
| | - Debing Liu
- Department of General Surgery, Wuhan Red Cross Hospital, 430000 Wuhan, China.
| |
Collapse
|
18
|
Yang H, Pu L, Li R, Zhu R. NCAPG is transcriptionally regulated by CBX3 and activates the Wnt/β-catenin signaling pathway to promote proliferation and the cell cycle and inhibit apoptosis in colorectal cancer. J Gastrointest Oncol 2023; 14:900-912. [PMID: 37201048 PMCID: PMC10186512 DOI: 10.21037/jgo-23-63] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is highly heterogeneous at the genetic and molecular level and a major contributor to cancer-death worldwide. Non-structural maintenance of chromosomes (SMC) condensin I complex subunit G (NCAPG) is a subunit of condensin I and has been shown to be associated with the prognosis of cancers. This study investigated the functional role of NCAPG in CRC and its mechanism. METHODS Messenger RNA (mRNA) and protein expressions of NCAPG and chromobox protein homolog 3 (CBX3) were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The proliferation, cycle, and apoptosis of HCT116 cells were analyzed by Cell Counting Kit-8 (CCK-8), flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. RT-qPCR and western blot were used to determine the transfection efficacy of short hairpin (sh)-NCAPG and sh-CBX3. Western blot was used to explore cycle-, apoptosis-, and Wnt/β-catenin signaling-related proteins, and the activity of NCAPG promoter was evaluated using a luciferase report assay. The expressions of cleaved caspase9 and cleaved caspase3 were assessed by colorimetric caspase activity assay. RESULTS The results showed that NCAPG expression was elevated in CRC cells. After transfection with sh-NCAPG, NCAPG expression was reduced. It was also discovered that NCAPG knockdown suppressed proliferation and the cell cycle but induced apoptosis in HCT116 cells. The Human Transcription Factor Database (HumanTFDB; http://bioinfo.life.hust.edu.cn/HumanTFDB#!/) predicted the binding sites of CBX3 and NCAPG promoters. Meanwhile, the Encyclopedia of RNA Interactomes (ENCORI) database (https://starbase.sysu.edu.cn/) revealed that CBX3 was positively correlated with NCAPG. Our results showed that NCAPG was transcriptionally regulated by CBX3. Additionally, Wnt/β-catenin signaling was discovered to be activated by CBX3 overexpression. Further experiments showed that NCAPG transcriptionally regulated by CBX3 activated Wnt/β-catenin signaling to regulate the proliferation, cell cycle, and apoptosis of HCT116 cells. CONCLUSIONS Collectively, the results of our study indicated that NCAPG was transcriptionally regulated by CBX3 and activated the Wnt/β-catenin signaling pathway to facilitate the progression of CRC.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Leilei Pu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ruobing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rong Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
19
|
Lin J, Li G, Bai Y, Xie Y. NCAPG as a novel prognostic biomarker in numerous cancers: a meta-analysis and bioinformatics analysis. Aging (Albany NY) 2023; 15:2503-2524. [PMID: 36996493 PMCID: PMC10120898 DOI: 10.18632/aging.204621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Identification of effective biomarkers for cancer prognosis is a primary research challenge. Recently, several studies have reported the relationship between NCAPG and the occurrence of various tumors. However, none have combined meta-analytical and bioinformatics approaches to systematically assess the role of NCAPG in cancer. METHODS We searched four databases, namely, PubMed, Web of Science, Embase, and the Cochrane Library, for relevant articles published before April 30, 2022. The overall hazard ratio or odds ratio and 95% confidence intervals were calculated to assess the relationship between NCAPG expression and cancer survival prognosis or clinical characteristics. Furthermore, the aforementioned results were validated using the GEPIA2, Kaplan-Meier plotter, and PrognoScan databases. RESULTS The meta-analysis included eight studies with 1096 samples. The results showed that upregulation of NCAPG was correlated with poorer overall survival (hazard ratio = 2.90, 95% confidence interval = 2.06-4.10, P < 0.001) in the cancers included in the study. Subgroup analysis showed that in some cancers, upregulation of NCAPG was correlated with age, distant metastasis, lymph node metastasis, TNM stage, relapse, differentiation, clinical stage, and vascular invasion. These results were validated using the GEPIA2, UALCAN, and PrognoScan databases. We also explored the processes of NCAPG methylation and phosphorylation. CONCLUSION Dysregulated NCAPG expression is associated with the clinical prognostic and pathological features of various cancers. Therefore, NCAPG can serve as a human cancer therapeutic target and a new potential prognostic biomarker.
Collapse
|
20
|
Szudy-Szczyrek A, Mlak R, Mazurek M, Krajka T, Chocholska S, Bitkowska P, Jutrzenka M, Szczyrek M, Homa-Mlak I, Krajka A, Małecka-Massalska T, Hus M. The TT Genotype of the KIAA1524 rs2278911 Polymorphism Is Associated with Poor Prognosis in Multiple Myeloma. Cells 2023; 12:cells12071029. [PMID: 37048102 PMCID: PMC10093279 DOI: 10.3390/cells12071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Background: The KIAA1524 gene encodes an oncoprotein, CIP2A, which inhibits the phosphorylation of the Akt kinase B, stabilizes the c-Myc protein, and, through that, promotes cancerogenesis. An increase in CIP2A expression has been observed in numerous solid tumors and hematologic malignancies, including multiple myeloma (MM). The aim of our study was to evaluate the clinical impact of the functional single nucleotide polymorphisms (SNP) of the KIAA1524 gene (rs2278911, 686C > T) in MM patients. Methods: The study group consisted of 128 patients with de novo MM. EDTA venous blood samples were collected prior to the treatment. The SNPs were analyzed by Real-Time PCR with the use of specific Taqman probes. Results: Multivariable analysis revealed that variables independently associated with shorter progression-free survival (PFS) included thrombocytopenia, delTP53 and IGH/CCND1 translocation and the TT genotype of the KIAA1524 gene (686C > T) (median PFS: 6 vs. 25 months; HR = 7.18). On the other hand, autologous haematopoietic stem cell transplantation (AHSCT) was related to a lower risk of early disease progression. Moreover, light chain disease, International Staging System (ISS) 3, poor performance status, hypoalbuminemia, IGH/FGFR3 translocation and the TT genotype of the KIAA1524 gene (686C > T) were independent prognostic factors associated with shorter overall survival (OS) (median OS: 8 vs. 45 months; HR = 7.08). Conclusion: The evaluation of the SNP 686C > T of the KIAA1524 gene could be used as a diagnostic tool in MM patients at risk of early disease progression and death.
Collapse
|
21
|
NCAPG deregulation indicates poor patient survival and contributes to colorectal carcinogenesis. Pathol Res Pract 2023; 241:154238. [PMID: 36442414 DOI: 10.1016/j.prp.2022.154238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Colorectal cancer (CRC) is one of the types of cancers with a high incidence and is ranked the 3rd among men and 2nd among women worldwide. The purpose of this study was to investigate the correlation between non-SMC condensin I complex subunit G (NCAPG) and the prognosis of CRC and its function in CRC cells. The expression of NCAPG in colorectal tissues and cells was detected by immunoblotting and immunohistochemistry. Kaplan-Meier analysis was used to analyze the correlation between NCAPG and CRC prognosis. RNAi technology was used to investigate how NCAPG inhibition affected the proliferation and migration of CRC cells. Overexpression of NCAPG was positively correlated with several clinicopathologic characteristics, including T stage (P = 0.0198), M stage (P = 0.0005), and TNM stage (P < 0.0001). Kaplan-Meier analysis showed that the overexpression of NCAPG was also negatively correlated with disease-free survival and overall survival. In the culture of CRC cells, the knockdown of NCAPG inhibited the proliferation, migration, and invasion of the cells. Meanwhile, it was also found that NCAPG knockdown could interfere with G2/M-G1 transition in the cell cycle, resulting in the inhibition of cell proliferation. The overexpression of NCAPG may serve as a candidate biomarker for CRC prognosis. NCAPG is also a potential therapeutic target for CRC.
Collapse
|
22
|
Urh K, Zidar N, Boštjančič E. Bioinformatics Analysis of RNA-seq Data Reveals Genes Related to Cancer Stem Cells in Colorectal Cancerogenesis. Int J Mol Sci 2022; 23:ijms232113252. [PMID: 36362041 PMCID: PMC9654446 DOI: 10.3390/ijms232113252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSC) play one of the crucial roles in the pathogenesis of various cancers, including colorectal cancer (CRC). Although great efforts have been made regarding our understanding of the cancerogenesis of CRC, CSC involvement in CRC development is still poorly understood. Using bioinformatics and RNA-seq data of normal mucosa, colorectal adenoma, and carcinoma (n = 106) from GEO and TCGA, we identified candidate CSC genes and analyzed pathway enrichment analysis (PEI) and protein–protein interaction analysis (PPI). Identified CSC-related genes were validated using qPCR and tissue samples from 47 patients with adenoma, adenoma with early carcinoma, and carcinoma without and with lymph node metastasis and were compared to normal mucosa. Six CSC-related genes were identified: ANLN, CDK1, ECT2, PDGFD, TNC, and TNXB. ANLN, CDK1, ECT2, and TNC were differentially expressed between adenoma and adenoma with early carcinoma. TNC was differentially expressed in CRC without lymph node metastases whereas ANLN, CDK1, and PDGFD were differentially expressed in CRC with lymph node metastases compared to normal mucosa. ANLN and PDGFD were differentially expressed between carcinoma without and with lymph node metastasis. Our study identified and validated CSC-related genes that might be involved in early stages of CRC development (ANLN, CDK1, ECT2, TNC) and in development of metastasis (ANLN, PDGFD).
Collapse
|
23
|
Cai X, Gao J, Shi C, Guo WZ, Guo D, Zhang S. The role of NCAPG in various of tumors. Biomed Pharmacother 2022; 155:113635. [PMID: 36095957 DOI: 10.1016/j.biopha.2022.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Non-SMC Condensin I complex subunit G (NCAPG), a mitosis-associated chromosomal condensation protein, is related to sister chromatid appropriate separation during the condensation and fusion of chromosomes and responsible for the condensation and stabilization of chromosomes during meiosis and mitosis. Studies have shown that NCAPG is highly adjusted in a variety of cancers, and its related molecular mechanism affects tumor cell proliferation, invasion, metastasis, and apoptosis including hepatocellular carcinoma, prostate cancer, breast cancer, gastric cancer, gliomas, lung adenocarcinoma, colorectal cancer, ovarian cancer, and endometrial cancer. Clinically, the expression of NCAPG is strongly correlated with N-classification, M-classification, and clinical stage, and NCAPG is valuable for the prognosis of patients with lung adenocarcinoma. In addition, NCAPG can also reduce the sensitivity of tumor cells such as breast cancer to reduce the reaction of the original chemotherapy, so that tumor cells are drug-resistance. In summary, NCAPG can serve as a new diagnosis and treatment target for a variety of cancers, and is also a very promising prognostic marker. Therefore, this review summarizes the critical role of NCAPG in the diagnosis, treatment, and prognosis for various cancers, and the mechanism by which NCAPG plays its pivotal roles.
Collapse
Affiliation(s)
- Xin Cai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Chengcheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
24
|
miR‑29a‑3p inhibits the malignant characteristics of non‑small cell lung cancer cells by reducing the activity of the Wnt/β‑catenin signaling pathway. Oncol Lett 2022; 24:379. [PMID: 36238844 PMCID: PMC9494602 DOI: 10.3892/ol.2022.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) can influence non-small cell lung cancer (NSCLC) in a tumor-suppressive and oncogenic manner. The present study aimed to investigate the effects and underlying mechanisms of miR-29a-3p in NSCLC. NSCLC cell lines (A549, H1299, and H460) and a normal lung epithelial cell line (BEAS-2B) were used. Additionally, a mouse lung tumor xenograft model was established using A549 cells and used to determine the effects of miR-29a-3p on NSCLC in vivo. Tumor volumes were measured every week. The expression of miR-29a-3p in cells and lung tissues were detected by RT-qPCR. Cell proliferation was detected using Cell Counting Kit-8 and EdU assays. Migration and invasion were assessed using wound healing and Transwell invasion assays, respectively. Ki-67 expression was detected using immunohistochemical staining. The expression levels of Wnt3a and β-catenin were determined using western blotting. miR-29a-3p expression was significantly downregulated in NSCLC cells and mice. In contrast to miR-29a-3p knockdown, miR-29a-3p overexpression decreased NSCLC cell proliferation, migration, and invasion as well as tumor growth in in the NSCLC mouse model. Moreover, miR-29a-3p overexpression decreased the protein expression levels of Wnt3a and β-catenin. The inhibitory effects of miR-29a-3p on NSCLC cells were reversed by LiCl (an activator of the Wnt signaling pathway). In conclusion, miR-29a-3p prevented NSCLC tumor growth and cell proliferation, migration, and invasion by inhibiting the Wnt/β-catenin signaling pathway. This finding offers novel insights into the prognosis and treatment of NSCLC.
Collapse
|
25
|
Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, Liu T, Yang Z, Peng J. NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun 2022; 622:101-107. [PMID: 35843088 DOI: 10.1016/j.bbrc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
The non-SMC condensin I complex subunit G (NCAPG) is a subunit of the condensin complex, many studies have shown that NCAPG is aberrantly expressed in different tumors and closely associated with poor prognosis, but its role in bladder cancer is unclear. In this paper, we found that NCAPG expression was upregulated in bladder cancer in tumor-related databases, and further verified the expression of NCAPG in bladder cancer tissues as well as bladder cancer cell lines by tissue microarray, qPCR, and WB. Next, we explored the changes in bladder cancer cell proliferation as well as migration after NCAPG knockdown by cell growth curve, colony formation, soft agar assay, and xenograft model. Finally, we examined the changes in downstream signaling pathways after NCAPG knockdown using RNA-Seq, and we found that the NF-κB signaling pathway was inhibited with NCAPG gene knockdown, which was verified by luciferase reporter assay as well as WB. In conclusion, our results illustrate that NCAPG knockdown can inhibit the proliferation of bladder cancer cells through the NF-κB signaling pathway. This finding demonstrates that NCAPG could be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Feng Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Departmentof Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China
| | - Jiageng Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yisha Zuhaer
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|