1
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz JM, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. Front Genet 2024; 15:1488109. [PMID: 39748949 PMCID: PMC11693692 DOI: 10.3389/fgene.2024.1488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and pfhrp2/3 deletions), and SNP barcodes to provide population genetics estimates of Plasmodium vivax and Plasmodium falciparum parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites. Methods We analyzed 51 P. vivax and 80 P. falciparum samples from three distinct areas in the Loreto region of the Peruvian Amazon: Nueva Jerusalén (NJ), Mazan (MZ), and Santa Emilia (SE). Population genetics estimates and costs were compared using the SNP barcodes (P. vivax: 40 SNPs and P. falciparum: 28 SNPs) and MS panels (P. vivax: 16 MS and P. falciparum: 7 MS). Results The P. vivax genetic diversity (expected heterozygosity, He) trends were similar for both markers: He MS = 0.68-0.78 (p > 0.05) and He SNP = 0.36-0.38 (p > 0.05). P. vivax pairwise genetic differentiation (fixation index, FST) was also comparable: FST-MS = 0.04-0.14 and FST-SNP = 0.03-0.12 (pairwise p > 0.05). In addition, P. falciparum genetic diversity trends (He MS = 0-0.48, p < 0.05; He SNP = 0-0.09, p < 0.05) and pairwise FST comparisons (FST-MS = 0.14-0.65, FST-SNP = 0.19-0.61, pairwise p > 0.05) were concordant between both panels. For P. vivax, no geographic clustering was observed with any panel, whereas for P. falciparum, similar population structure clustering was observed with both markers, assigning most parasites from NJ to a distinct subpopulation from MZ and SE. We found significant differences in detecting polyclonal infections: for P. vivax, MS identified a higher proportion of polyclonal infections than SNP (69% vs. 33%, p = 3.3 × 10-5), while for P. falciparum, SNP and MS detected similar rates (46% vs. 31%, p = 0.21). The AmpliSeq assay had a higher estimated per-sample cost compared to MS ($183 vs. $27-49). Discussion The SNP barcodes in the AmpliSeq assays offered comparable results to MS for investigating population genetics in P. vivax and P. falciparum populations, despite some discrepancies in determining polyclonality. Given both panels have their respective advantages and limitations, the choice between both should be guided by research objectives, costs, and resource availability.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mahdi Safarpour
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
3
|
Robinson G, Pérez-Cordón G, Hamilton C, Katzer F, Connelly L, Alexander CL, Chalmers RM. Validation of a multilocus genotyping scheme for subtyping Cryptosporidium parvum for epidemiological purposes. Food Waterborne Parasitol 2022; 27:e00151. [PMID: 35498551 PMCID: PMC9043402 DOI: 10.1016/j.fawpar.2022.e00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Subtyping Cryptosporidium parvum for outbreak investigations or epidemiological surveillance usually relies on DNA sequence analysis of a gene coding for a 60 KDa glycoprotein (gp60). Although gp60 can be useful for allelic discrimination and to help investigate sources and routes of transmission, the presence of common subtypes and recombination during the parasite's sexual life-cycle demand a multilocus-based method for more discriminatory genotyping. While whole genome sequencing would provide the ultimate approach, it is a time consuming and expensive option for faecal parasites such as Cryptosporidium that occur at low density and are difficult to propagate routinely. In this study, we selected and evaluated a panel of previously identified variable-number tandem-repeat (VNTR) markers, to establish a multilocus genotyping scheme based on fragment sizing, appropriate for inter-laboratory surveillance and outbreak investigations. Seven VNTR markers were validated in vitro and demonstrated typeability of 0.85 and discriminatory power of 0.99. The discriminatory power was much greater than the currently used gp60 sequencing (0.74), which identified 26 subtypes, compared to 100 different MLVA profiles within the same sample set. The assay was robust, with repeatable results and reproducibility across three laboratories demonstrating the scheme was suitable for inter-laboratory comparison of C. parvum subtypes. As the majority of genotypes (79%) were unique among epidemiologically unrelated samples, there was efficiency to infer linkage, and epidemiological concordance was observed in historical outbreaks. We propose that the multilocus variable number of tandem repeats analysis scheme is suitable to assist outbreak investigations.
Collapse
|
4
|
Manrique P, Miranda-Alban J, Alarcon-Baldeon J, Ramirez R, Carrasco-Escobar G, Herrera H, Guzman-Guzman M, Rosas-Aguirre A, Llanos-Cuentas A, Vinetz JM, Escalante AA, Gamboa D. Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Negl Trop Dis 2019; 13:e0007876. [PMID: 31710604 PMCID: PMC6874088 DOI: 10.1371/journal.pntd.0007876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022] Open
Abstract
Despite efforts made over decades by the Peruvian government to eliminate malaria, Plasmodium vivax remains a challenge for public health decision-makers in the country. The uneven distribution of its incidence, plus its complex pattern of dispersion, has made ineffective control measures based on global information that lack the necessary detail to understand transmission fully. In this sense, population genetic tools can complement current surveillance. This study describes the genetic diversity and population structure from September 2012 to March 2015 in three geographically distant settlements, Cahuide (CAH), Lupuna (LUP) and Santa Emilia (STE), located in the Peruvian Amazon. A total 777 P. vivax mono-infections, out of 3264, were genotyped. Among study areas, LUP showed 19.7% of polyclonal infections, and its genetic diversity (Hexp) was 0.544. Temporal analysis showed a significant increment of polyclonal infections and Hexp, and the introduction and persistence of a new parasite population since March 2013. In STE, 40.1% of infections were polyclonal, with Hexp = 0.596. The presence of four genetic clusters without signals of clonal expansion and infections with lower parasite densities compared against the other two areas were also found. At least four parasite populations were present in CAH in 2012, where, after June 2014, malaria cases decreased from 213 to 61, concomitant with a decrease in polyclonal infections (from 0.286 to 0.18), and expectedly variable Hexp. Strong signals of gene flow were present in the study areas and wide geographic distribution of highly diverse parasite populations were found. This study suggests that movement of malaria parasites by human reservoirs connects geographically distant malaria transmission areas in the Peruvian Amazon. The maintenance of high levels of parasite genetic diversity through human mobility is a critical barrier to malaria elimination in this region. Plasmodium vivax transmission is heterogeneous and discontinuous in the Peruvian Amazon. Such heterogeneity is the result of factors that include, but are not restricted to, the environment, public policies, and characteristics of the parasite, the vector, and human activities. All these factors make P. vivax transmission resilient to interventions. In order to achieve the goals of control and local elimination, P. vivax surveillance must inform how those factors sustain disease transmission in order to focalize and synchronize control strategies. In this study, we implemented molecular surveillance complemented with population genetic tools in the areas of Cahuide, Lupuna, and Santa Emilia located in the Peruvian Amazon. In particular, we characterize the transmission and the parasite genetic variation in these sites from September 2012 to March 2015. The changes in parasite diversity, the wide geographic dispersion of parasite subpopulation and the introduction of a new parasite clone or subpopulation in Lupuna documented in this study suggest that connectivity among the different endemic areas, likely due to human mobility, sustains disease transmission in the region hindering the success of control measures. This information must be considered in the design of current control strategies.
Collapse
Affiliation(s)
- Paulo Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- * E-mail:
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jhonatan Alarcon-Baldeon
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Henry Herrera
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Fund for Scientific Research FNRS, Brussels, Belgium
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine (IGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofa, Universidad Peruana Cayetano Heredia, Lima, Perú
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
5
|
Förster I, Brockmann M, Schildgen O, Schildgen V. Microsatellite instability testing in colorectal cancer using the QiaXcel advanced platform. BMC Cancer 2018; 18:484. [PMID: 29703179 PMCID: PMC5923018 DOI: 10.1186/s12885-018-4400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Microsatellite instability (MSI) is a major predictive and diagnostic marker in several cancers including colorectal carcinomas. Diagnostic testing for microsatellites is generally performed using capillary sequencers, which requires expensive high-end equipment including expensive chemistry using fluorescent dyes labelling the PCR products of interest. In this study we have modified such a diagnostic protocol and established the microsatellite testing on the QiaXcel Advanced platform. Methods MSI testing was based on a previously established protocol describing a multiplex PCR followed by fluorescent detection of PCR products in a capillary sequencing device. Ten microsatellites were included in the new protocol: BAT25, BAT26, BAT40, D2s123, D10s197, D13s153, D17s250, D18s58, D5s346, and MycI. In this protocol the PCR was demultiplexed and established on the QiaXcel Advanced system (Qiagen, Hilden, Germany). Results Making use of a series of FFPE control samples with known MSI status including those with and without MSI a protocol for MSI testing was successfully established on the QiaXcel Advanced platform. Conclusions MSI testing for human colorectal cancers using the QiaXcel Advanced system could serve as an economic acceptable tool for rapid diagnostics in laboratories that do not have access to a capillary sequencing unit.
Collapse
Affiliation(s)
- Isabel Förster
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln, Cologne, Germany
| | - Michael Brockmann
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln, Cologne, Germany
| | - Oliver Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln, Cologne, Germany.
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Ostmerheimer Str. 200, D-51109 Köln, Cologne, Germany.
| |
Collapse
|
6
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
7
|
Genetic variability of Taenia solium cysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers. PLoS Negl Trop Dis 2017; 11:e0006087. [PMID: 29284011 PMCID: PMC5746202 DOI: 10.1371/journal.pntd.0006087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
The adult Taenia solium, the pork tapeworm, usually lives as a single worm in the small intestine of humans, its only known definitive host. Mechanisms of genetic variation in T. solium are poorly understood. Using three microsatellite markers previously reported [1], this study explored the genetic variability of T. solium from cysts recovered from experimentally infected pigs. It then explored the genetic epidemiology and transmission in naturally infected pigs and adult tapeworms recovered from human carriers from an endemic rural community in Peru. In an initial study on experimental infection, two groups of three piglets were each infected with proglottids from one of two genetically different tapeworms for each of the microsatellites. After 7 weeks, pigs were slaughtered and necropsy performed. Thirty-six (92.3%) out of 39 cysts originated from one tapeworm, and 27 (100%) out of 27 cysts from the other had exactly the same genotype as the parental tapeworm. This suggests that the microsatellite markers may be a useful tool for studying the transmission of T. solium. In the second study, we analyzed the genetic variation of T. solium in cysts recovered from eight naturally infected pigs, and from adult tapeworms recovered from four human carriers; they showed genetic variability. Four pigs had cysts with only one genotype, and four pigs had cysts with two different genotypes, suggesting that multiple infections of genetically distinct parental tapeworms are possible. Six pigs harbored cysts with a genotype corresponding to one of the identified tapeworms from the human carriers. In the dendrogram, cysts appeared to cluster within the corresponding pigs as well as with the geographical origin, but this association was not statistically significant. We conclude that genotyping of microsatellite size polymorphisms is a potentially important tool to trace the spread of infection and pinpoint sources of infection as pigs spread cysts with a shared parental genotype. Taenia solium, the pork tapeworm, is a major cause of epilepsy in developing countries. Although it has been deemed a potentially eradicable pathogen, it remains prevalent in rural communities. This two-part study aims to evaluate the utility of three microsatellite markers previously reported, to identify parasites and to establish relationships among them. In the first study, we evaluated the genetic variability of the progeny of two individual tapeworms by infecting two groups of three pigs each. We found variation of 8% and 0% in the two groups with respect to the parental tapeworm, indicating that the cysts source may be identifiable. Next, in the second study we described the genetic relationships among tapeworms obtained from four carriers and cysts obtained from eight naturally infected pigs in a rural community. We demonstrated that pigs can have two types of cysts, suggesting multiple infections. In addition, we found relatedness between 6 pigs and one tapeworm identified in the community. Our results indicate the potential for microsatellite markers to identify genetic relationships between parasites and thereby establish routes of transmission. It is likely that the limited number of microsatellites prevented us from establishing relatedness with more precision. Therefore, further evaluation of additional microsatellites is recommended.
Collapse
|
8
|
Overlap Extension Barcoding for the Next Generation Sequencing and Genotyping of Plasmodium falciparum in Individual Patients in Western Kenya. Sci Rep 2017; 7:41108. [PMID: 28117350 PMCID: PMC5259759 DOI: 10.1038/srep41108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Large-scale molecular epidemiologic studies of Plasmodium falciparum parasites have provided insights into parasite biology and transmission, can identify the spread of drug resistance, and are useful in assessing vaccine targets. The polyclonal nature infections in high transmission settings is problematic for traditional genotyping approaches. Next-generation sequencing (NGS) approaches to parasite genotyping allow sensitive detection of minority variants, disaggregation of complex parasite mixtures, and scalable processing of large samples sets. Therefore, we designed, validated, and applied to field parasites an approach that leverages sequencing of individually barcoded samples in a multiplex manner. We utilize variant barcodes, invariant linker sequences and modular template-specific primers to allow for the simultaneous generation of high-dimensional sequencing data of multiple gene targets. This modularity permits a cost-effective and reproducible way to query many genes at once. In mixtures of reference parasite genomes, we quantitatively detected unique haplotypes comprising as little as 2% of a polyclonal infection. We applied this genotyping approach to field-collected parasites collected in Western Kenya in order to simultaneously obtain parasites genotypes at three unlinked loci. In summary, we present a rapid, scalable, and flexible method for genotyping individual parasites that enables molecular epidemiologic studies of parasite evolution, population structure and transmission.
Collapse
|
9
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|