1
|
Liu R, Li G, Li M, Wang B, Zhang D, Xu L, Zhao L, Liao R, Xu Q, Bei ZC, Song Y. In vitro interaction of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen in the asexual blood stage of Plasmodium falciparum 3D7. Microbiol Spectr 2024; 12:e0063024. [PMID: 38780257 PMCID: PMC11218538 DOI: 10.1128/spectrum.00630-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Naphthoquine is a promising candidate for antimalarial combination therapy. Its combination with artemisinin has demonstrated excellent efficacy in clinical trials conducted across various malaria-endemic areas. A co-formulated combination of naphthoquine and azithromycin has also shown high clinical efficacy for malaria prophylaxis in Southeast Asia. Developing new combination therapies using naphthoquine will provide additional arsenal responses to the growing threat of artemisinin resistance. Furthermore, due to its long half-life, the possible interaction of naphthoquine with other drugs also needs attention. However, studies on its pharmacodynamic interactions with other drugs are still limited. In this study, the in vitro interactions of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen were evaluated in the asexual stage of Plasmodium falciparum 3D7. By using the combination index analysis and the SYBR Green I-based fluorescence assay, different interaction patterns of selected drugs with naphthoquine were revealed. Curcumin showed a slight but significant synergistic interaction with naphthoquine at lower effect levels, and no antagonism was observed across the full range of effect levels for all tested ratios. Atovaquone showed a potency decline when combined with naphthoquine. For ivermectin, a significant antagonism with naphthoquine was observed at a broad range of effect levels below 75% inhibition, although no significant interaction was observed at higher effect levels. Ketotifen interacted with naphthoquine similar to ivermectin, but significant antagonism was observed for only one tested ratio. These findings should be helpful to the development of new naphthoquine-based combination therapy and the clinically reasonable application of naphthoquine-containing therapies. IMPORTANCE Pharmacodynamic interaction between antimalarials is not only crucial for the development of new antimalarial combination therapies but also important for the appropriate clinical use of antimalarials. The significant synergism between curcumin and naphthoquine observed in this study suggests the potential value for further development of new antimalarial combination therapy. The finding of a decline in atovaquone potency in the presence of naphthoquine alerts to a possible risk of treatment or prophylaxis failure for atovaquone-proguanil following naphthoquine-containing therapies. The observation of antagonism between naphthoquine and ivermectin raised a need for concern about the applicability of naphthoquine-containing therapy in malaria-endemic areas with ivermectin mass drug administration deployed. Considering the role of atovaquone-proguanil as a major alternative when first-line artemisinin-based combination therapy is ineffective and the wide implementation of ivermectin mass drug administration in malaria-endemic countries, the above findings will be important for the appropriate clinical application of antimalarials involving naphthoquine-containing therapies.
Collapse
Affiliation(s)
- Ruotong Liu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guoming Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruhe Liao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
2
|
Huang Y, Yang Y, Liu G, Xu M. New clinical application prospects of artemisinin and its derivatives: a scoping review. Infect Dis Poverty 2023; 12:115. [PMID: 38072951 PMCID: PMC10712159 DOI: 10.1186/s40249-023-01152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recent research has suggested that artemisinin and its derivatives may have therapeutic effects on parasites, viruses, tumors, inflammation and skin diseases. This study aimed to review clinical research on artemisinin and its derivatives except anti-malaria and explore possible priority areas for future development. METHODS Relevant articles in English and Chinese published before 28 October 2021 were reviewed. All articles were retrieved and obtained from databases including WanFang, PubMed/MEDLINE, the Cochrane Library, China National Knowledge International, Embase, OpenGrey, the Grey Literature Report, Grey Horizon, and ClinicalTrials.gov. Studies were selected for final inclusion based on predefined criteria. Information was then extracted and analyzed by region, disease, outcome, and time to identify relevant knowledge gaps. RESULTS Seventy-seven studies on anti-parasitic (35), anti-tumor (16), anti-inflammatory (12), anti-viral (8), and dermatological treatments (7) focused on the safety and efficacy of artemisinin and its derivatives. The anti-parasitic clinical research developed rapidly, with a large number of trials, rapid clinical progress, and multiple research topics. In contrast, anti-viral research was limited and mainly stayed in phase I clinical trials (37.50%). Most of the studies were conducted in Asia (60%), followed by Africa (27%), Europe (8%), and the Americas (5%). Anti-parasite and anti-inflammatory research were mainly distributed in less developed continents such as Asia and Africa, while cutting-edge research such as anti-tumor has attracted more attention in Europe and the United States. At the safety level, 58 articles mentioned the adverse reactions of artemisinin and its derivatives, with only one study showing a Grade 3 adverse event, while the other studies did not show any related adverse reactions or required discontinuation. Most studies have discovered therapeutic effects of artemisinin or its derivatives on anti-parasitic (27), anti-tumor (9), anti-inflammatory (9) and dermatological treatment (6). However, the efficacy of artemisinin-based combination therapies (ACTs) for parasitic diseases (non-malaria) is still controversial. CONCLUSIONS Recent clinical studies suggest that artemisinin and its derivatives may be safe and effective candidates for anti-tumor, anti-parasitic, anti-inflammatory and dermatological drugs. More phase II/III clinical trials of artemisinin and its derivatives on antiviral effects are needed.
Collapse
Affiliation(s)
- Yangmu Huang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
| | - Yang Yang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| | - Guangqi Liu
- Energy Saving and Environmental Protection and Occupational Safety and Health Research Institute, China Academy of Railway Sciences Co., Ltd, No. 2 Daliushu Road, Beijing, 100081, China
| | - Ming Xu
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
3
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
4
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103358. [PMID: 32143118 DOI: 10.1016/j.etap.2020.103358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a progressive systemic disease characterized by low bone mineral density and deterioration of bone microarchitecture. The current therapies are effective to prevent further bone loss and fractures but they are accompanied by undesirable side effects and cost issues. The discovery of Chinese herbal medicines with osteoprotective effects provides alternative treatments to prevent bone loss without causing severe side effects. Artemisinin (ARS) and its related compounds have been clinically used as antimalarial agents. Interestingly, their bioactivity is not limited to antimalarial treatment. Experimental evidences indicate that ARS compounds are a potential type of therapeutic alternative medicine for bone loss induced by accelerated osteoclastic bone resorption. The present review intends to summarize the current understandings of ARS compounds and their molecular mechanisms of actions in preventing bone loss. ARS compounds selectively inhibit osteoclast differentiation by downregulation of pathways involved in receptor activator of nuclear factor kappa-B ligand (RANKL) -induced osteoclastogenesis, and have no effect on osteogenic differentiation of osteoblasts. The exact mechanism of activation and action of these anti-resorption effects are not fully elucidated. Considering the characteristic of high levels of intracellular iron in osteoclasts, ARS compounds may inhibit osteoclast differentiation via mechanisms associated with intracellular iron, including the cleavage of endoperoxide bridge, oxidative damage and ferroptosis. The anti-resorptive effects of ARS compounds need to be further investigated in bone loss models caused by different factors, and to be under clinical development.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
6
|
Xie Y, Liu H, Sun Y, Xing J. The gender-related variability in the pharmacokinetics and antiplasmodial activity of naphthoquine in rodents. Malar J 2020; 19:71. [PMID: 32054478 PMCID: PMC7020547 DOI: 10.1186/s12936-020-3153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Naphthoquine (NQ) is a suitable partner anti-malarial for the artemisinin-based combination therapy (ACT), which is recommended to be taken orally as a single-dose regimen. The metabolism of NQ was mainly mediated by CYP2D6, which is well-known to show gender-specific differences in its expression. In spite of its clinical use, there is limited information on the pharmacokinetics of NQ, and no data are available for females. In this study, the effect of gender on the pharmacokinetics and antiplasmodial efficacy of NQ in rodents was evaluated. The underlying factors leading to the potential gender difference, i.e., plasma protein binding and metabolic clearance, were also evaluated. METHODS The pharmacokinetic profiles of NQ were investigated in healthy male or female rats after a single oral administration of NQ. The antiplasmodial efficacy of NQ was studied in male or female mice infected with Plasmodium yoelii. The recrudescence and survival time of infected mice were also recorded after drug treatment. Plasma protein binding of NQ was determined in pooled plasma collected from male or female mice, rat or human. In vitro metabolism experiments were performed in the liver microsomes of male or female mice, rat or human. RESULTS The results showed that the gender of rats did not affect NQ exposure (AUC0-t and Cmax) significantly (P > 0.05). However, a significant (P < 0.05) longer t1/2 was found for NQ in male rats (192.1 ± 47.7), compared with female rats (143.9 ± 27.1). Slightly higher but not significant (P > 0.05) antiplasmodial activity was found for NQ in male mice (ED90, 1.10 mg/kg) infected with P. yoelii, compared with female mice (ED90, 1.67 mg/kg). The binding rates of NQ to plasma protein were similar in males and females. There was no metabolic difference for NQ in male and female mice, rat or human liver microsomes. CONCLUSIONS These results indicated that the pharmacokinetic profiles of NQ were similar between male and female rats, except for a longer t1/2 in male rats. The difference was not associated with plasma protein binding or hepatic metabolic clearance. Equivalent antiplasmodial activity was found for NQ in male and female mice infected with P. yoelii. This study will be helpful for the rational design of clinical trials for NQ.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | - Huixiang Liu
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | - Yanhong Sun
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | - Jie Xing
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
7
|
El-Beshbishi SN, El Bardicy S, Tadros M, Ayoub M, Taman A. Biological activity of artemisinin-naphthoquine phosphate on Schistosoma haematobium stages and the vector Bulinus truncatus. Trans R Soc Trop Med Hyg 2019; 113:320-325. [PMID: 30668820 DOI: 10.1093/trstmh/try144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/01/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Schistosoma haematobium infection is a major public health problem in most of Africa and the Middle East and praziquantel remains the only drug used for schistosomiasis control, therefore emergence of drug resistance is unavoidable. The antimalarial artemisinin-naphthoquine phosphate combination (co-ArNp) was recently documented to have promising effects on Schistosoma mansoni and its snail host. METHODS We conducted this in vitro study to assess the bioactivity of co-ArNp on S. haematobium and its snail vector Bulinus truncatus. RESULTS Treatment of S. haematobium worms with 1 μg/ml co-ArNp for 24 h reduced worm motility, while 20 μg/ml resulted in 25-100% mortality of adult flukes within 48-72 h. Incubation of S. haematobium miracidia and cercariae with the molluscicidal co-ArNp (50% lethal concentration 7.5 μg/ml) killed all the free larval stages within 40 and 15 min, respectively. Also, exposure of B. truncatus adult snails to 20 ppm of the combined regimen caused a mortality rate of 100% within 24 h. CONCLUSIONS Co-ArNp therapy has also shown encouraging activity against the other major human schistosome, S. haematobium, as well as its vector.
Collapse
Affiliation(s)
- Samar N El-Beshbishi
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samia El Bardicy
- Department of Medical Malacology, Theodor Bilharz Research Institute, Warrak El Hadar, Imbaba, Giza, Egypt
| | - Menerva Tadros
- Department of Medical Malacology, Theodor Bilharz Research Institute, Warrak El Hadar, Imbaba, Giza, Egypt
| | - Magda Ayoub
- Department of Medical Malacology, Theodor Bilharz Research Institute, Warrak El Hadar, Imbaba, Giza, Egypt
| | - Amira Taman
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
9
|
Mischlinger J, Agnandji ST, Ramharter M. Single dose treatment of malaria - current status and perspectives. Expert Rev Anti Infect Ther 2016; 14:669-78. [PMID: 27254098 DOI: 10.1080/14787210.2016.1192462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Despite increased international efforts for control and ultimate elimination, malaria remains a major health problem. Currently, artemisinin-based combination therapies are the treatment of choice for uncomplicated malaria exhibiting high efficacy in clinical trial settings in sub-Saharan Africa. However, their administration over a three-day period is associated with important problems of treatment adherence resulting in markedly reduced effectiveness of currently recommended antimalarials under real world settings. AREAS COVERED Antimalarial drug candidates and antimalarial drug combinations currently under advanced clinical development for the indication as single dose antimalarial therapy. Expert commentary: Several new drug candidates and combinations are currently undergoing pivotal proof-of-concept studies or clinical development programmes. The development of a single dose combination therapy would constitute a breakthrough in the control of malaria. Such an innovative treatment approach would simultaneously close the effectiveness gap of current three-day therapies and revolutionize population based interventions in the context of malaria elimination campaigns.
Collapse
Affiliation(s)
- Johannes Mischlinger
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Selidji T Agnandji
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Michael Ramharter
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany.,c Department of Medicine I, Division of Infectious Diseases and Tropical Medicine , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
10
|
|