1
|
Silva AF, Torres MDT, Silva LS, Alves FL, Miranda A, Oliveira VX, de la Fuente-Nunez C, Pinheiro AAS. Synthetic angiotensin II peptide derivatives confer protection against cerebral and severe non-cerebral malaria in murine models. Sci Rep 2024; 14:4682. [PMID: 38409185 PMCID: PMC10897374 DOI: 10.1038/s41598-024-51267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.
Collapse
Affiliation(s)
- Adriana F Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Leandro S Silva
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Flavio L Alves
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Antonio Miranda
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vani X Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Hagemann CL, Macedo AJ, Tasca T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitol Res 2024; 123:122. [PMID: 38311672 DOI: 10.1007/s00436-024-08133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.
Collapse
Affiliation(s)
- Corina Lobato Hagemann
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
3
|
Kurniaty N, Maharani R, Hidayat AT, Supratman U. An Overview on Antimalarial Peptides: Natural Sources, Synthetic Methodology and Biological Properties. Molecules 2023; 28:7778. [PMID: 38067508 PMCID: PMC10708299 DOI: 10.3390/molecules28237778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Peptide compounds play a significant role in medicinal chemistry as they can inhibit the activity of species that cause malaria. This literature review summarizes the isolation of antimalarial peptides, the synthesis method with the detailed structure and sequences of each peptide, and discusses the biological activity of the isolated and synthesized compounds. The synthetic routes and reactions for cyclic and linear antimalarial peptides are systematically highlighted in this review including preparing building blocks, protection and deprotection, coupling and cyclization reactions until the target compound is obtained. Based on the literature data and the results, this review's aim is to provide information to discover and synthesize more antimalarial peptide for future research.
Collapse
Affiliation(s)
- Nety Kurniaty
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Tamansari No.1, Tamansari, Kec. Bandung Wetan, Kota Bandung 40116, West Java, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.T.H.); (U.S.)
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.T.H.); (U.S.)
- Laboratorium Sentral, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.T.H.); (U.S.)
- Laboratorium Sentral, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.T.H.); (U.S.)
- Laboratorium Sentral, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Centre of Natural Products and Synthesis Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Charoenkwan P, Schaduangrat N, Lio P, Moni MA, Chumnanpuen P, Shoombuatong W. iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides. ACS OMEGA 2022; 7:41082-41095. [PMID: 36406571 PMCID: PMC9670693 DOI: 10.1021/acsomega.2c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure, hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem concerning antimicrobial resistance, these peptides possess great therapeutic value owing to their low incidences of drug resistance as compared to conventional antibiotics. Although well-known experimental methods are able to precisely determine the antimalarial activity of peptides, these methods are still time-consuming and costly. Thus, machine learning (ML)-based methods that are capable of identifying AMAPs rapidly by using only sequence information would be beneficial for the high-throughput identification of AMAPs. In this study, we propose the first computational model (termed iAMAP-SCM) for the large-scale identification and characterization of peptides with antimalarial activity by using only sequence information. Specifically, we employed an interpretable scoring card method (SCM) to develop iAMAP-SCM and estimate propensities of 20 amino acids and 400 dipeptides to be AMAPs in a supervised manner. Experimental results showed that iAMAP-SCM could achieve a maximum accuracy and Matthew's coefficient correlation of 0.957 and 0.834, respectively, on the independent test dataset. In addition, SCM-derived propensities of 20 amino acids and selected physicochemical properties were used to provide an understanding of the functional mechanisms of AMAPs. Finally, a user-friendly online computational platform of iAMAP-SCM is publicly available at http://pmlabstack.pythonanywhere.com/iAMAP-SCM. The iAMAP-SCM predictor is anticipated to assist experimental scientists in the high-throughput identification of potential AMAP candidates for the treatment of malaria and other clinical applications.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern
Management and Information Technology, College of Arts, Media and
Technology, Chiang Mai University, Chiang Mai50200, Thailand
| | - Nalini Schaduangrat
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok10700, Thailand
| | - Pietro Lio
- Department
of Computer Science and Technology, University
of Cambridge, CambridgeshireCB3 0FD, U.K.
| | - Mohammad Ali Moni
- Artificial
Intelligence & Digital Health, School of Health and Rehabilitation
Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St LuciaQLD 4072, Australia
| | - Pramote Chumnanpuen
- Department
of Zoology, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
- Omics Center
for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok10900, Thailand
| | - Watshara Shoombuatong
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok10700, Thailand
| |
Collapse
|
5
|
Nogrado K, Adisakwattana P, Reamtong O. Antimicrobial peptides: On future antiprotozoal and anthelminthic applications. Acta Trop 2022; 235:106665. [PMID: 36030045 DOI: 10.1016/j.actatropica.2022.106665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Control and elimination of parasitic diseases are nowadays further complicated by emergence of drug resistance. Drug resistance is a serious threat as there are not many effective antiparasitic drugs available. Aside from drug resistance, it is also favorable to look for alternative therapeutics that have lesser adverse effects. Antimicrobial peptides (AMPs) were found to address these issues. Some of its desirable traits are they are fast-acting, it has broad action that the pathogen will have difficulty developing resistance to, it has high specificity, and most importantly there are extensive sources such as bacteria; invertebrate and vertebrate animals as well as plants. Aside from this, AMPs are also found to modulate the immune response. This review would like to describe AMPs that have been studied for their antiparasitic activities especially on parasitic diseases that causes high mortality and exhibits drug resistance like malaria and leishmaniasis and to discuss the mechanism of action of these AMPS.
Collapse
Affiliation(s)
- Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
De A, Tiwari A, Pande V, Sinha A. Evolutionary trilogy of malaria, angiotensin II and hypertension: deeper insights and the way forward. J Hum Hypertens 2022; 36:344-351. [PMID: 34480100 DOI: 10.1038/s41371-021-00599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Despite clinical and pathological distinctions between malaria and hypertension, accumulated epidemiological and evolutionary evidence indicate the need of deeper understanding how severe malaria contributes to elevated hypertension risk. Malaria is said to exert strong selection pressure on the host genome, thus selecting certain genetic polymorphisms. Few candidate polymorphisms have also been reported in the RAS (ACE I/D and ACE2 rs2106809) that are shown to increase angiotensin II (ang II) levels in a combinatorial manner. The raised ang II has some antiplasmodial actions in addition to protecting against severe/cerebral malaria. It is hypothesized that RAS polymorphisms may have been naturally selected over time in the malaria-endemic areas in such a way that hypertension, or the risk thereof, is higher in such areas as compared to non-malaria endemic areas. The purpose of this review is to gain deeper insights into various sparse evidence linking malaria and hypertension and suggesting a way forward.
Collapse
Affiliation(s)
- Auley De
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Aparna Tiwari
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.,Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
7
|
Somsri S, Mungthin M, Klubthawee N, Adisakwattana P, Hanpithakpong W, Aunpad R. A Mitochondria-Penetrating Peptide Exerts Potent Anti-Plasmodium Activity and Localizes at Parasites' Mitochondria. Antibiotics (Basel) 2021; 10:antibiotics10121560. [PMID: 34943772 PMCID: PMC8698686 DOI: 10.3390/antibiotics10121560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are considered a novel drug target as they play a key role in energy production and programmed cell death of eukaryotic cells. The mitochondria of malaria parasites differ from those of their vertebrate hosts, contributing to the drug selectivity and the development of antimalarial drugs. (Fxr)3, a mitochondria-penetrating peptide or MPP, entered malaria-infected red cells without disrupting the membrane and subsequently killed the blood stage of P. falciparum parasites. The effects were more potent on the late stages than on the younger stages. Confocal microscopy showed that the (Fxr)3 intensely localized at the parasite mitochondria. (Fxr)3 highly affected both the lab-strain, chloroquine-resistant K1, and freshly isolated malaria parasites. (Fxr)3 (1 ng/mL to 10 μg/mL) was rarely toxic towards various mammalian cells, i.e., mouse fibroblasts (L929), human leukocytes and erythrocytes. At a thousand times higher concentration (100 μg/mL) than that of the antimalarial activity, cytotoxicity and hemolytic activity of (Fxr)3 were observed. Compared with the known antimalarial drug, atovaquone, (Fxr)3 exhibited more rapid killing activity. This is the first report on antimalarial activity of (Fxr)3, showing localization at parasites’ mitochondria.
Collapse
Affiliation(s)
- Sangdao Somsri
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120, Thailand; (S.S.); (N.K.)
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Natthaporn Klubthawee
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120, Thailand; (S.S.); (N.K.)
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Warunee Hanpithakpong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120, Thailand; (S.S.); (N.K.)
- Correspondence: ; Tel.: +662-986-9213-9 (ext. 7210)
| |
Collapse
|
8
|
Pedron CN, Silva AF, Torres MDT, Oliveira CSD, Andrade GP, Cerchiaro G, Pinhal MAS, de la Fuente-Nunez C, Oliveira Junior VX. Net charge tuning modulates the antiplasmodial and anticancer properties of peptides derived from scorpion venom. J Pept Sci 2021; 27:e3296. [PMID: 33442881 DOI: 10.1002/psc.3296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Abstract
VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 μmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.
Collapse
Affiliation(s)
- Cibele Nicolaski Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Adriana Farias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | | | - Gislaine Patricia Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil
| | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19102, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, 19102, USA
| | - Vani Xavier Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil
| |
Collapse
|
9
|
The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. Eur J Pharm Sci 2019; 136:104952. [DOI: 10.1016/j.ejps.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
|
10
|
Torres MDT, Andrade GP, Sato RH, Pedron CN, Manieri TM, Cerchiaro G, Ribeiro AO, de la Fuente-Nunez C, Oliveira VX. Natural and redesigned wasp venom peptides with selective antitumoral activity. Beilstein J Org Chem 2018; 14:1693-1703. [PMID: 30013694 PMCID: PMC6036970 DOI: 10.3762/bjoc.14.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
About 1 in 8 U.S. women (≈12%) will develop invasive breast cancer over the course of their lifetime. Surgery, chemotherapy, radiotherapy, and hormone manipulation constitute the major treatment options for breast cancer. Here, we show that both a natural antimicrobial peptide (AMP) derived from wasp venom (decoralin, Dec-NH2), and its synthetic variants generated via peptide design, display potent activity against cancer cells. We tested the derivatives at increasing doses and observed anticancer activity at concentrations as low as 12.5 μmol L−1 for the selective targeting of MCF-7 breast cancer cells. Flow cytometry assays further revealed that treatment with wild-type (WT) peptide Dec-NH2 led to necrosis of MCF-7 cells. Additional atomic force microscopy (AFM) measurements indicated that the roughness of cancer cell membranes increased significantly when treated with lead peptides compared to controls. Biophysical features such as helicity, hydrophobicity, and net positive charge were identified to play an important role in the anticancer activity of the peptides. Indeed, abrupt changes in peptide hydrophobicity and conformational propensity led to peptide inactivation, whereas increasing the net positive charge of peptides enhanced their activity. We present peptide templates with selective activity towards breast cancer cells that leave normal cells unaffected. These templates represent excellent scaffolds for the design of selective anticancer peptide therapeutics.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil.,Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, The Center for Microbiome Informatics and Therapeutics, Cambridge, 02139, MA, United States of America
| | - Gislaine P Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Roseli H Sato
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Cibele N Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Tania M Manieri
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Anderson O Ribeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, The Center for Microbiome Informatics and Therapeutics, Cambridge, 02139, MA, United States of America
| | - Vani X Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
| |
Collapse
|
11
|
Silva AF, Torres MDT, Silva LS, Alves FL, de Sá Pinheiro AA, Miranda A, Capurro ML, de la Fuente-Nunez C, Oliveira VX. Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction. Sci Rep 2017; 7:14326. [PMID: 29085013 PMCID: PMC5662717 DOI: 10.1038/s41598-017-14642-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II (Ang II) is a natural mammalian hormone that has been described to exhibit antiplasmodial activity therefore constituting a promising alternative for the treatment of malaria. Despite its promise, the development of Ang II as an antimalarial is limited by its potent induction of vasoconstriction and its rapid degradation within minutes. Here, we used peptide design to perform targeted chemical modifications to Ang II to generate conformationally restricted (disulfide-crosslinked) peptide derivatives with suppressed vasoconstrictor activity and increased stability. Designed constrained peptides were synthesized chemically and then tested for antiplasmodial activity. Two lead constrained peptides were identified (i.e., peptides 1 and 2), each composed of 10 amino acid residues. These peptides exhibited very promising activity in both our Plasmodium gallinaceum (>80%) and Plasmodium falciparum (>40%) models, an activity that was equivalent to that of Ang II, and led to complete suppression of vasoconstriction. In addition, peptide 5 exhibited selective activity towards the pre-erythrocytic stage (98% of activity against P. gallinaceum), thus suggesting that it may be possible to design peptides that target specific stages of the malaria life cycle. The Ang II derived stable scaffolds presented here may provide the basis for development of a new generation of peptide-based drugs for the treatment of malaria.
Collapse
Affiliation(s)
- Adriana Farias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Marcelo Der Torossian Torres
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil.,Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, USA
| | - Leandro Souza Silva
- Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavio Lopes Alves
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Acácia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Margareth Lara Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. .,The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, USA.
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|