1
|
Sima N, Ayllon-Hermida A, Fernández-Becerra C, Del Portillo HA. Extracellular vesicles in malaria: proteomics insights, in vitro and in vivo studies indicate the need for transitioning to natural human infections. mBio 2025:e0230424. [PMID: 39868784 DOI: 10.1128/mbio.02304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022. Noticeably, despite effective control measurements, in 2022 there were an estimated 249 million malaria cases in 85 malaria-endemic countries and an increase of 5 million cases compared with 2021. Further understanding the biology, epidemiology, and pathogenesis of human malaria is therefore essential for achieving malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed nanoparticles pivotal in intercellular communication and secreted by all cell types. Here, we will review what is currently known about EVs in malaria, from biogenesis and cargo to molecular insights of pathophysiology. Of relevance, a meta-analysis of proteomics cargo, and comparisons between in vitro and in vivo human studies revealed striking differences with those few studies reported from patients. Thus, indicating the need for rigor standardization of methodologies and for transitioning to human infections to elucidate their physiological role. We conclude with a focus on translational aspects in diagnosis and vaccine development and highlight key gaps in the knowledge of EVs in malaria research.
Collapse
Affiliation(s)
- Núria Sima
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Alberto Ayllon-Hermida
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carmen Fernández-Becerra
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Bashi A, Lekpor C, Hood JL, Thompson WE, Stiles JK, Driss A. Modulation of Heme-Induced Inflammation Using MicroRNA-Loaded Liposomes: Implications for Hemolytic Disorders Such as Malaria and Sickle Cell Disease. Int J Mol Sci 2023; 24:16934. [PMID: 38069257 PMCID: PMC10707194 DOI: 10.3390/ijms242316934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Hemolytic disorders, like malaria and sickle cell disease (SCD), are responsible for significant mortality and morbidity rates globally, specifically in the Americas and Africa. In both malaria and SCD, red blood cell hemolysis leads to the release of a cytotoxic heme that triggers the expression of unique inflammatory profiles, which mediate the tissue damage and pathogenesis of both diseases. MicroRNAs (miRNAs), such as miR-451a and let-7i-5p, contribute to a reduction in the pro-inflammatory responses induced by circulating free hemes. MiR-451a targets both IL-6R (pro-inflammatory) and 14-3-3ζ (anti-inflammatory), and when this miRNA is present, IL-6R is reduced and 14-3-3ζ is increased. Let-7i-5p targets and reduces TLR4, which results in anti-inflammatory signaling. These gene targets regulate inflammation via NFκB regulation and increase anti-inflammatory signaling. Additionally, they indirectly regulate the expression of key heme scavengers, such as heme-oxygenase 1 (HO-1) (coded by the HMOX1 gene) and hemopexin, to decrease circulating cytotoxic heme concentration. MiRNAs can be transported within extracellular vesicles (EVs), such as exosomes, offering insights into the mechanisms of mitigating heme-induced inflammation. We tested the hypothesis that miR-451a- or let-7i-5p-loaded artificial EVs (liposomes) will reduce heme-induced inflammation in brain vascular endothelial cells (HBEC-5i, ATCC: CRL-3245) and macrophages (THP-1, ATCC: TIB-202) in vitro. We completed arginase and nitric oxide assays to determine anti- and pro-inflammatory macrophage presence, respectively. We also assessed the gene expression of IL-6R, TLR4, 14-3-3ζ, and NFκB by RT-qPCR for both cell lines. Our findings revealed that the exposure of HBEC-5i and THP-1 to liposomes loaded with miR-451a or let-7i-5p led to a reduced mRNA expression of IL-6R, TLR4, 14-3-3ζ, and NFκB when treated with a heme. It also resulted in the increased expression of HMOX1 and hemopexin. Finally, macrophages exhibited a tendency toward adopting an anti-inflammatory differentiation phenotype. These findings suggest that miRNA-loaded liposomes can modulate heme-induced inflammation and can be used to target specific cellular pathways, mediating inflammation common to hematological conditions, like malaria and SCD.
Collapse
Affiliation(s)
- Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| | - Cecilia Lekpor
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.L.); (J.K.S.)
| | - Joshua L. Hood
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Hepatobiology and Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville , Louisville, KY 40202, USA
| | - Winston E. Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.L.); (J.K.S.)
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| |
Collapse
|
3
|
Wu Y, Leyk S, Torabi H, Höhn K, Honecker B, Tauler MDPM, Cadar D, Jacobs T, Bruchhaus I, Metwally NG. Plasmodium falciparum infection reshapes the human microRNA profiles of red blood cells and their extracellular vesicles. iScience 2023; 26:107119. [PMID: 37534175 PMCID: PMC10391920 DOI: 10.1016/j.isci.2023.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023] Open
Abstract
Plasmodium falciparum, a human malaria parasite, develops in red blood cells (RBCs), which represent approximately 70% of all human blood cells. Additionally, RBC-derived extracellular vesicles (RBC-EVs) represent 7.3% of the total EV population. The roles of microRNAs (miRNAs) in the consequences of P. falciparum infection are unclear. Here, we analyzed the miRNA profiles of non-infected human RBCs (niRBCs), ring-infected RBCs (riRBCs), and trophozoite-infected RBCs (trRBCs), as well as those of EVs secreted from these cells. Hsa-miR-451a was the most abundant miRNA in all RBC and RBC-EV populations, but its expression level was not affected by P. falciparum infection. Overall, the miRNA profiles of RBCs and their EVs were altered significantly after infection. Most of the differentially expressed miRNAs were shared between RBCs and their EVs. A target prediction analysis of the miRNAs revealed the possible identity of the genes targeted by these miRNAs (CXCL10, OAS1, IL7, and CCL5) involved in immunomodulation.
Collapse
Affiliation(s)
- Yifan Wu
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- Research Group Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanifeh Torabi
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dániel Cadar
- Arbovirology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Research Group Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department University of Hamburg, Hamburg, Germany
| | - Nahla Galal Metwally
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
4
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
5
|
Lodde V, Floris M, Muroni MR, Cucca F, Idda ML. Non-coding RNAs in malaria infection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1697. [PMID: 34651456 PMCID: PMC9286032 DOI: 10.1002/wrna.1697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Malaria is one of the most severe infectious diseases affecting humans and it is caused by protozoan pathogens of the species Plasmodium (spp.). The malaria parasite Plasmodium is characterized by a complex, multistage life cycle that requires tight gene regulation which allows for host invasion and defense against host immune responses. Unfortunately, the mechanisms regulating gene expression during Plasmodium infection remain largely elusive, though several lines of evidence implicate a major involvement of non-coding RNAs (ncRNAs). The ncRNAs have been found to play a key role in regulating transcriptional and post-transcriptional events in a broad range of organisms including Plasmodium. In Plasmodium ncRNAs have been shown to regulate key events in the multistage life cycle and virulence ability. Here we review recent progress involving ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) and their role as regulators of gene expression during Plasmodium infection in human hosts with focus on the possibility of using these molecules as biomarkers for monitoring disease status. We also discuss the surprising function of ncRNAs in mediating the complex interplay between parasite and human host and future perspectives of the field. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Rosaria Muroni
- Department of Medical, Surgical, and Experimental SciencesUniversity of SassariSassariItaly
| | - Francesco Cucca
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR)SassariItaly
| |
Collapse
|
6
|
Kataria P, Surela N, Chaudhary A, Das J. MiRNA: Biological Regulator in Host-Parasite Interaction during Malaria Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042395. [PMID: 35206583 PMCID: PMC8874942 DOI: 10.3390/ijerph19042395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/26/2022]
Abstract
Malaria is a severe life-threatening disease caused by the bites of parasite-infected female Anopheles mosquitoes. It remains a significant problem for the most vulnerable children and women. Recent research has helped establish the relationship between microRNAs (miRNAs) and many other diseases. MiRNAs are the class of small non-coding RNAs consisting of 18–23 nucleotides in length that are evolutionarily conserved and regulate gene expression at a post-transcriptional level and play a significant role in various molecular mechanisms such as cell survival, cell proliferation, and differentiation. MiRNAs can help detect malaria infection as the malaria parasite could alter the miRNA expression of the host. These alterations can be diagnosed by the molecular diagnostic tool that can indicate disease. We summarize the current understanding of miRNA during malaria infection. miRNAs can also be used as biomarkers, and initial research has unearthed their potential in diagnosing and managing various diseases such as malaria.
Collapse
Affiliation(s)
- Poonam Kataria
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Neha Surela
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-25307203; Fax: +91-25307177
| |
Collapse
|
7
|
Gupta H, Wassmer SC. Harnessing the Potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 2021; 11:793954. [PMID: 34976869 PMCID: PMC8716737 DOI: 10.3389/fcimb.2021.793954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
Prabhu SR, Ware AP, Saadi AV. Erythrocyte miRNA regulators and malarial pathophysiology. INFECTION GENETICS AND EVOLUTION 2021; 93:105000. [PMID: 34252617 DOI: 10.1016/j.meegid.2021.105000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Pathophysiology of Plasmodium falciparum and Plasmodium vivax in malaria vis a vis host and the parasite genome interactions has been deciphered recently to present the biology of cerebral malaria, severe anaemia and placental malaria. Small non-coding RNAs have exhibited their potential to be considered as indicators and regulators of diseases. The malarial pathologies and their associated mechanisms mediated by miRNAs and their role in haematopoiesis and red cell-related disorders are elucidated. Evidence of miRNA carrying exosome-like vesicles released during infection, delivering signals to endothelial cells enhancing gene expression, resulting in parasite sequestration and complications leading to pathologies of cerebral malaria are important breakthroughs. Pregnancy malaria showed Plasmodium surface antigen promoted erythrocyte sequestration in the placental intervillous space, provoking disease development and assorted complications. Syncytiotrophoblast-derived microparticles during pregnancy and fetus development may predict pathophysiological progression on account of their altered miRNA cargoes in malaria.
Collapse
Affiliation(s)
- Sowmya R Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akshay P Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
9
|
Gupta H, Rubio M, Sitoe A, Varo R, Cisteró P, Madrid L, Cuamba I, Jimenez A, Martiáñez-Vendrell X, Barrios D, Pantano L, Brimacombe A, Bustamante M, Bassat Q, Mayor A. Plasma MicroRNA Profiling of Plasmodium falciparum Biomass and Association with Severity of Malaria Disease. Emerg Infect Dis 2021; 27:430-442. [PMID: 33496227 PMCID: PMC7853565 DOI: 10.3201/eid2702.191795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Severe malaria (SM) is a major public health problem in malaria-endemic countries. Sequestration of Plasmodium falciparum–infected erythrocytes in vital organs and the associated inflammation leads to organ dysfunction. MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of SM. We applied next-generation sequencing to evaluate the differential expression of miRNAs in SM and in uncomplicated malaria (UM. Six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. Relative expression of hsa-miR-4497 quantified by TaqMan-quantitative reverse transcription PCR was higher in plasma of children with SM than those with UM (p<0.048) and again correlated with P. falciparum biomass (p = 0.033). These findings suggest that different physiopathological processes in SM and UM lead to differential expression of miRNAs and pave the way for future studies to assess their prognostic value in malaria.
Collapse
|
10
|
Gupta H, Sahu PK, Pattnaik R, Mohanty A, Majhi M, Mohanty AK, Pirpamer L, Hoffmann A, Mohanty S, Wassmer SC. Plasma levels of hsa-miR-3158-3p microRNA on admission correlate with MRI findings and predict outcome in cerebral malaria. Clin Transl Med 2021; 11:e396. [PMID: 34185402 PMCID: PMC8181195 DOI: 10.1002/ctm2.396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Himanshu Gupta
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Praveen K. Sahu
- Center for the Study of Complex Malaria in India (CSCMi)RourkelaOdishaIndia
| | | | - Anita Mohanty
- Department of Intensive CareIspat General HospitalRourkelaOdishaIndia
| | - Megharay Majhi
- Department of RadiologyIspat General HospitalRourkelaOdishaIndia
| | - Akshaya K. Mohanty
- Infectious Diseases Biology UnitInstitute of Life SciencesBhubaneswarOdishaIndia
| | - Lukas Pirpamer
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Angelika Hoffmann
- Department of NeuroradiologyUniversity Hospital HeidelbergHeidelbergGermany,Department of NeuroradiologyBern UniversityBernSwitzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India (CSCMi)RourkelaOdishaIndia
| | - Samuel C. Wassmer
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
11
|
Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules 2021; 11:844. [PMID: 34198889 PMCID: PMC8228566 DOI: 10.3390/biom11060844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.
Collapse
Affiliation(s)
| | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, al. Kościuszki 4, 90-419 Łódź, Poland; (J.K.); (M.M.)
| |
Collapse
|
12
|
Chakrabarti M, Garg S, Rajagopal A, Pati S, Singh S. Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion. Dis Model Mech 2020; 13:13/6/dmm042820. [PMID: 32493727 PMCID: PMC7286292 DOI: 10.1242/dmm.042820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mature human erythrocytes contain a rich pool of microRNAs (miRNAs), which result from differentiation of the erythrocytes during the course of haematopoiesis. Recent studies have described the effect of erythrocytic miRNAs on the invasion and growth of the malaria parasite Plasmodium falciparum during the asexual blood stage of its life cycle. In this work, we have identified two erythrocytic miRNAs, miR-150-3p and miR-197-5p, that show favourable in silico hybridization with Plasmodium apicortin, a protein with putative microtubule-stabilizing properties. Co-expression of P. falciparum apicortin and these two miRNAs in a cell line model resulted in downregulation of apicortin at both the RNA and protein level. To create a disease model of erythrocytes containing miRNAs, chemically synthesized mimics of miR-150-3p and miR-197-5p were loaded into erythrocytes and subsequently used for invasion by the parasite. Growth of the parasite was hindered in miRNA-loaded erythrocytes, followed by impaired invasion; micronemal secretion was also reduced, especially in the case of miR-197-5p. Apicortin expression was found to be reduced in miRNA-loaded erythrocytes. To interpret the effect of downregulation of apicortin on parasite invasion to host erythrocytes, we investigated the secretion of the invasion-related microneme protein apical membrane antigen 1 (AMA1). AMA1 secretion was found to be reduced in miRNA-treated parasites. Overall, this study identifies apicortin as a novel target within the malaria parasite and establishes miR-197-5p as its miRNA inhibitor. This miRNA represents an unconventional nucleotide-based therapeutic and provides a new host factor-inspired strategy for the design of antimalarial molecular medicine. This article has an associated First Person interview with the first author of the paper. Summary: The role of host erythrocyte microRNA in the downregulation of malaria parasite gene expression is investigated. Two microRNAs are identified, miR-197-5p and miR-150-3p, which affect parasite growth and invasion when enriched in erythrocytes.
Collapse
Affiliation(s)
- Malabika Chakrabarti
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayana Rajagopal
- Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Naamsestraat 59 - Box 2465, Belgium
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Noida, UP 201314, India
| | - Shailja Singh
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Rangel G, Teerawattanapong N, Chamnanchanunt S, Umemura T, Pinyachat A, Wanram S. Candidate microRNAs as Biomarkers in Malaria Infection: A Systematic Review. Curr Mol Med 2019; 20:36-43. [PMID: 31429687 DOI: 10.2174/1566524019666190820124827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023]
Abstract
Malaria disease is a public health problem especially in tropical countries, 445.000 of malaria-related deaths have been reported in 2017. MicroRNAs (miRNAs) are small non-coding RNAs with 18-24 nucleotides in length, which have been demonstrated to regulate gene expression of several biological processes. The dysregulation of host immune-related gene expressions during the transcriptional process by microRNA has been extensively reported in malaria parasite invasion of erythrocytes infection. The candidate's miRNAs would be used as potential biomarkers in the future and perspective. A systematic review on miRNAs as candidate clinical biomarkers in malaria infection has been established in this study. Electronic databases (Medline, EMBASE, CINAHL and Cochrane data bases) were screened and articles were included as per established selection criteria. We comprehensively searched to identify publications related to malaria and miRNA. PRISMA guidelines were followed, 262 articles were searched, duplicates and unconnected papers were excluded. Nineteen articles were included in the study. It was found that malaria parasite infected liver or tissue produce tissue-specific miRNAs and release to the blood stream. The association of miRNAs including miR-16, miR-155, miR-150, miR-451 and miR-223 with the dysregulations of immune-related genes expression such as PfEMP-1, IFN-γ, AGO- 1 AGO-2; IL4, CD80, CD86, CD36, ANG-1 and ANG-2 during early, severe and/or cerebral malaria infections indicate the potential use of those miRNAs as biomarkers for malaria infection.
Collapse
Affiliation(s)
- Gregorio Rangel
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nattawat Teerawattanapong
- Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tsukuru Umemura
- Departments of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Fukuoka 831-8501, Japan
| | - Anuwat Pinyachat
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surasak Wanram
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Centre for Excellence in Biomedical Science and Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
14
|
Identification of potential whole blood MicroRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling. Biochem Biophys Res Commun 2018; 506:471-477. [DOI: 10.1016/j.bbrc.2018.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022]
|
15
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bansal D, Sultan AA. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J Transl Med 2018; 16:272. [PMID: 30286756 PMCID: PMC6172720 DOI: 10.1186/s12967-018-1646-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background In the recent years Plasmodium vivax has been reported to cause severe infections associated with mortality. Clinical evaluation has limited accuracy for the early identification of the patients progressing towards the fatal condition. Researchers have tried to identify the serum and the plasma-based indicators of the severe malaria. Discovery of MicroRNA (miRNA) has opened up an era of identification of early biomarkers for various infectious and non-infectious diseases. MicroRNAs (miRNA) are the small non-coding RNA molecules of length 19–24 nts and are responsible for the regulation of the majority of human gene expressions at post transcriptional level. Methods We identified the differentially expressed miRNAs by microarray and validated the selected miRNAs by qRT-PCR. We assessed the diagnostic potential of these up-regulated miRNAs for complicated P. vivax malaria. Futher, the bioinformtic analysis was performed to construct protein–protein and mRNA–miRNA networks to identify highly regulated miRNA. Results In the present study, utility of miRNA as potential biomarker of complicated P. vivax malaria was explored. A total of 276 miRNAs were found to be differentially expressed by miRNA microarray and out of which 5 miRNAs (hsa-miR-7977, hsa-miR-28-3p, hsa-miR-378-5p, hsa-miR-194-5p and hsa-miR-3667-5p) were found to be significantly up-regulated in complicated P. vivax malaria patients using qRT-PCR. The diagnostic potential of these 5 miRNAs were found to be significant with sensitivity and specificity of 60–71% and 69–81% respectively and area under curve (AUC) of 0.7 (p < 0.05). Moreover, in silico analysis of the common targets of up-regulated miRNAs revealed UBA52 and hsa-miR-7977 as majorly regulated hubs in the PPI and mRNA–miRNA networks, suggesting their putative role in complicated P. vivax malaria. Conclusion miR-7977 might act as a potential biomarker for differentiating complicated P. vivax malaria from uncomplicated type. The elevated levels of miR-7977 may have a role to play in the disease pathology through UBA52 or TGF-beta signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12967-018-1646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
16
|
Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 2017; 526:254-270. [PMID: 28450172 DOI: 10.1016/j.ijpharm.2017.04.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
Malaria is one of the most common infectious diseases, which has become a great public health problem all over the world. Ineffectiveness of available antimalarial treatment is the main reason behind its menace. The failure of current treatment strategies is due to emergence of drug resistance in Plasmodium falciparum and drug toxicity in human beings. Therefore, the development of novel and effective antimalarial drugs is the need of the hour. Considering the huge biomedical applications of nanotechnology, it can be potentially used for the malarial treatment. Silver nanoparticles (AgNPs) have demonstrated significant activity against malarial parasite (P. falciparum) and vector (female Anopheles mosquito). It is believed that AgNPs will be a solution for the control of malaria. This review emphasizes the pros- and cons of existing antimalarial treatments and in depth discussion on application of AgNPs for treatment of malaria. The role of nanoparticles for site specific drug delivery and toxicological issues have also been discussed.
Collapse
|
17
|
Dkhil MA, Al-Quraishy SA, Abdel-Baki AAS, Delic D, Wunderlich F. Differential miRNA Expression in the Liver of Balb/c Mice Protected by Vaccination during Crisis of Plasmodium chabaudi Blood-Stage Malaria. Front Microbiol 2017; 7:2155. [PMID: 28123381 PMCID: PMC5225092 DOI: 10.3389/fmicb.2016.02155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are increasingly recognized as epigenetic regulators for outcome of diverse infectious diseases and vaccination efficacy, but little information referring to this exists for malaria. This study investigates possible effects of both protective vaccination and P. chabaudi malaria on the miRNome of the liver as an effector against blood-stage malaria using miRNA microarrays and quantitative PCR. Plasmodium chabaudi blood-stage malaria takes a lethal outcome in female Balb/c mice, but a self-healing course after immunization with a non-infectious blood-stage vaccine. The liver robustly expresses 71 miRNA species at varying levels, among which 65 miRNA species respond to malaria evidenced as steadily increasing or decreasing expressions reaching highest or lowest levels toward the end of the crisis phase on day 11 p.i. in lethal malaria. Protective vaccination does not affect constitutive miRNA expression, but leads to significant (p < 0.05) changes in the expression of 41 miRNA species, however evidenced only during crisis. In vaccination-induced self-healing infections, 18 miRNA-species are up- and 14 miRNA-species are down-regulated by more than 50% during crisis in relation to non-vaccinated mice. Vaccination-induced self-healing and survival of otherwise lethal infections of P. chabaudi activate epigenetic miRNA-regulated remodeling processes in the liver manifesting themselves during crisis. Especially, liver regeneration is accelerated as suggested by upregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-26a, miR-122-5p, miR30a, miR27a, and mir-29a, whereas the up-regulated expression of miR-142-3p by more than 100% is compatible with the view of enhanced hepatic erythropoiesis, possibly at expense of megakaryopoiesis, during crisis of P. chabaudi blood-stage malaria.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|