1
|
Maher SP, Bakowski MA, Vantaux A, Flannery EL, Andolina C, Gupta M, Antonova-Koch Y, Argomaniz M, Cabrera-Mora M, Campo B, Chao AT, Chatterjee AK, Cheng WT, Chuenchob E, Cooper CA, Cottier K, Galinski MR, Harupa-Chung A, Ji H, Joseph SB, Lenz T, Lonardi S, Matheson J, Mikolajczak SA, Moeller T, Orban A, Padín-Irizarry V, Pan K, Péneau J, Prudhomme J, Roesch C, Ruberto AA, Sabnis SS, Saney CL, Sattabongkot J, Sereshki S, Suriyakan S, Ubalee R, Wang Y, Wasisakun P, Yin J, Popovici J, McNamara CW, Joyner CJ, Nosten F, Witkowski B, Le Roch KG, Kyle DE. A Drug Repurposing Approach Reveals Targetable Epigenetic Pathways in Plasmodium vivax Hypnozoites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.31.526483. [PMID: 36778461 PMCID: PMC9915689 DOI: 10.1101/2023.01.31.526483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical cure of Plasmodium vivax malaria must include elimination of quiescent 'hypnozoite' forms in the liver; however, the only FDA-approved treatments are contraindicated in many vulnerable populations. To identify new drugs and drug targets for hypnozoites, we screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library and a collection of epigenetic inhibitors against P. vivax liver stages. From both libraries, we identified inhibitors targeting epigenetics pathways as selectively active against P. vivax and P. cynomolgi hypnozoites. These include DNA methyltransferase (DNMT) inhibitors as well as several inhibitors targeting histone post-translational modifications. Immunofluorescence staining of Plasmodium liver forms showed strong nuclear 5-methylcystosine signal, indicating liver stage parasite DNA is methylated. Using bisulfite sequencing, we mapped genomic DNA methylation in sporozoites, revealing DNA methylation signals in most coding genes. We also demonstrated that methylation level in proximal promoter regions as well as in the first exon of the genes may affect, at least partially, gene expression in P. vivax. The importance of selective inhibitors targeting epigenetic features on hypnozoites was validated using MMV019721, an acetyl-CoA synthetase inhibitor that affects histone acetylation and was previously reported as active against P. falciparum blood stages. In summary, our data indicate that several epigenetic mechanisms are likely modulating hypnozoite formation or persistence and provide an avenue for the discovery and development of improved radical cure antimalarials.
Collapse
Affiliation(s)
- S. P. Maher
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - M. A. Bakowski
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - A. Vantaux
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - E. L. Flannery
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - M. Gupta
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - Y. Antonova-Koch
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - M. Argomaniz
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - M. Cabrera-Mora
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - B. Campo
- Medicines for Malaria Venture (MMV); Geneva, 1215, Switzerland
| | - A. T. Chao
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - A. K. Chatterjee
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - W. T. Cheng
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - E. Chuenchob
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. A. Cooper
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | | | - M. R. Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University; Atlanta, GA, 30329, USA
| | - A. Harupa-Chung
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - H. Ji
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - S. B. Joseph
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - T. Lenz
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - S. Lonardi
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - J. Matheson
- Department of Microbiology and Immunology, University of Otago; Dunedin, 9016, New Zealand
| | - S. A. Mikolajczak
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | | | - A. Orban
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - V. Padín-Irizarry
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
- School of Sciences, Clayton State University; Morrow, GA, 30260, USA
| | - K. Pan
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - J. Péneau
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - J. Prudhomme
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - C. Roesch
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - A. A. Ruberto
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - S. S. Sabnis
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - C. L. Saney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - J. Sattabongkot
- Mahidol Vivax Research Unit, Mahidol University; Bangkok, 10400, Thailand
| | - S. Sereshki
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - S. Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - R. Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS); Bangkok, 10400, Thailand
| | - Y. Wang
- Department of Chemistry, University of California; Riverside, CA, 92521
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - P. Wasisakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - J. Yin
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - J. Popovici
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - C. W. McNamara
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - C. J. Joyner
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - F. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford; Oxford, OX3 7LG, UK
| | - B. Witkowski
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - K. G. Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - D. E. Kyle
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| |
Collapse
|
2
|
Zeng W, Zhao H, Zhao W, Yang Q, Li X, Li X, Duan M, Wang X, Li C, Xiang Z, Chen X, Cui L, Yang Z. Molecular Surveillance and Ex Vivo Drug Susceptibilities of Plasmodium vivax Isolates From the China-Myanmar Border. Front Cell Infect Microbiol 2021; 11:738075. [PMID: 34790586 PMCID: PMC8591282 DOI: 10.3389/fcimb.2021.738075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Drug resistance in Plasmodium vivax may pose a challenge to malaria elimination. Previous studies have found that P. vivax has a decreased sensitivity to antimalarial drugs in some areas of the Greater Mekong Sub-region. This study aims to investigate the ex vivo drug susceptibilities of P. vivax isolates from the China–Myanmar border and genetic variations of resistance-related genes. A total of 46 P. vivax clinical isolates were assessed for ex vivo susceptibility to seven antimalarial drugs using the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, artesunate, and dihydroartemisinin from 46 parasite isolates were 96.48, 1.95, and 1.63 nM, respectively, while the medians of IC50 values for piperaquine, pyronaridine, mefloquine, and quinine from 39 parasite isolates were 19.60, 15.53, 16.38, and 26.04 nM, respectively. Sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvmrp1 (P. vivax multidrug resistance protein 1), pvdhfr (P. vivax dihydrofolate reductase), and pvdhps (P. vivax dihydropteroate synthase) were determined by PCR and sequencing. Pvmdr1 had 13 non-synonymous substitutions, of which, T908S and T958M were fixed, G698S (97.8%) and F1076L (93.5%) were highly prevalent, and other substitutions had relatively low prevalences. Pvmrp1 had three non-synonymous substitutions, with Y1393D being fixed, G1419A approaching fixation (97.8%), and V1478I being rare (2.2%). Several pvdhfr and pvdhps mutations were relatively frequent in the studied parasite population. The pvmdr1 G698S substitution was associated with a reduced sensitivity to chloroquine, artesunate, and dihydroartemisinin. This study suggests the possible emergence of P. vivax isolates resistant to certain antimalarial drugs at the China–Myanmar border, which demands continuous surveillance for drug resistance.
Collapse
Affiliation(s)
- Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Roesch C, Mairet-Khedim M, Kim S, Lek D, Popovici J, Witkowski B. Impact of the first-line treatment shift from dihydroartemisinin/piperaquine to artesunate/mefloquine on Plasmodium vivax drug susceptibility in Cambodia. J Antimicrob Chemother 2021; 75:1766-1771. [PMID: 32211790 PMCID: PMC7303819 DOI: 10.1093/jac/dkaa092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cambodia is the epicentre of the emergence of Plasmodium falciparum drug resistance. Much less is known regarding the drug susceptibility of the co-endemic Plasmodium vivax. Only in vitro drug assays can determine the parasite’s intrinsic susceptibility, but these are challenging to implement for P. vivax and rarely performed. Objectives To evaluate the evolution of Cambodian P. vivax susceptibility to antimalarial drugs and determine their association with putative markers of drug resistance. Methods In vitro response to three drugs used in the past decade in Cambodia was measured for 52 clinical isolates from Eastern Cambodia collected between 2015 and 2018 and the sequence and copy number variation of their pvmdr1 and pvcrt genes were analysed. pvmdr1 polymorphism was also determined for an additional 250 isolates collected in Eastern Cambodia between 2014 and 2019. Results Among the 52 cryopreserved isolates tested, all were susceptible to the three drugs, with overall median IC50s of 16.1 nM (IQR 11.4–22.3) chloroquine, 3.4 nM (IQR 2.1–5.0) mefloquine and 4.6 nM (IQR 2.7–7.0) piperaquine. A significant increase in chloroquine and piperaquine susceptibility was observed between 2015 and 2018, unrelated to polymorphisms in pvcrt and pvmdr1. Susceptibility to mefloquine was significantly lower in parasites with a single mutation in pvmdr1 compared with isolates with multiple mutations. The proportion of parasites with this single mutation genotype increased between 2014 and 2019. Conclusions P. vivax with decreased susceptibility to mefloquine is associated with the introduction of mefloquine-based treatment during 2017–18.
Collapse
Affiliation(s)
- Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Mélissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Malariology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
4
|
Brashear AM, Huckaby AC, Fan Q, Dillard LJ, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Guler JL, Cui L. New Plasmodium vivax Genomes From the China-Myanmar Border. Front Microbiol 2020; 11:1930. [PMID: 32849480 PMCID: PMC7432439 DOI: 10.3389/fmicb.2020.01930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is increasingly the dominant species of malaria in the Greater Mekong Subregion (GMS), which is pursuing regional malaria elimination. P. vivax lineages in the GMS are poorly characterized. Currently, P. vivax reference genomes are scarce due to difficulties in culturing the parasite and lack of high-quality samples. In addition, P. vivax is incredibly diverse, necessitating the procurement of reference genomes from different geographical regions. Here we present four new P. vivax draft genomes assembled de novo from clinical samples collected in the China-Myanmar border area. We demonstrate comparable length and content to existing genomes, with the majority of structural variation occurring around subtelomeric regions and exported proteins, which we corroborated with detection of copy number variations in these regions. We predicted peptides from all PIR gene subfamilies, except for PIR D. We confirmed that proteins classically labeled as PIR D family members are not identifiable by PIR motifs, and actually bear stronger resemblance to DUF (domain of unknown function) family DUF3671, potentially pointing to a new, closely related gene family. Further, phylogenetic analyses of MSP7 genes showed high variability within the MSP7-B family compared to MSP7-A and -C families, and the result was comparable to that from whole genome analyses. The new genome assemblies serve as a resource for studying P. vivax within the GMS.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Adam C. Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Qi Fan
- Dalian Institute of Science and Technology, Dalian, China
| | - Luke J. Dillard
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zenglei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Jennifer L. Guler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
5
|
Obaldía N, Nuñez M. On the survival of 48 h Plasmodium vivax Aotus monkey-derived ex vivo cultures: the role of leucocytes filtration and chemically defined lipid concentrate media supplementation. Malar J 2020; 19:278. [PMID: 32746814 PMCID: PMC7398384 DOI: 10.1186/s12936-020-03348-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Filtration of leukocytes (WBCs) is a standard practice of malaria ex vivo cultures. To date, few studies have considered the effect of filtration or the lack thereof on the survival of Plasmodium vivax ex vivo cultures through one cycle of maturation. This study investigates the effect of WBC filtration and culture media supplementation on the survival of 48–72 h ex vivo cultures. Methods Using parasitaemia density, the study compares the survival of Plasmodipur® filtered, filter-retained or washed ex vivo cultures, maintained with McCoy’s5A medium supplemented with 25% serum alone or 20% in combination with 5% chemically defined lipid concentrate (CDLC), and in washed ex vivo cultures plus GlutaMAX™, benchmarked against IMDM™ or AIM-V™ media; also, assessed the survival of ex vivo cultures co-cultivated with human red blood cells (hRBCs). Results After 48 h of incubation a statistically significant difference was detected in the survival proportions of filtered and the filter-retained ex vivo cultures supplemented with serum plus CDLC (p = 0.0255), but not with serum alone (p = 0.1646). To corroborate these finding, parasitaemias of washed ex vivo cultures maintained with McCoy’s5A complete medium were benchmarked against IMDM™ or AIM-V™ media; again, a statistically significant difference was detected in the cultures supplemented with CDLC and GlutaMAX™ (p = 0.03), but not when supplemented with either alone; revealing a pattern of McCoy’s5A medium supplementation for Aotus-derived P. vivax cultures as follows: serum < serum + GlutaMAX™ < serum + CDLC < serum + CDLC + GlutaMAX™; confirming a key role of CDLC in combination with GlutaMAX™ in the enhanced survival observed. Lastly, results showed that co-cultivation with malaria-naïve hRBCs improved the survival of ex vivo cultures. Conclusions This study demonstrates that WBC filtration is not essential for the survival of P. vivax ex vivo cultures. It also demonstrates that McCoy’s5A complete medium improves the survival of Aotus-derived P. vivax ex vivo cultures, with no significant difference in survival compared to IMDM and AIM-V media. Finally, the study demonstrates that co-cultivation with hRBCs enhances the survival of ex vivo cultures. These findings are expected to help optimize seeding material for long-term P. vivax in vitro culture.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Center for the Evaluation of Antimalarial Drugs and Vaccines, Tropical Medicine Research/Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama city, Panama. .,Center for Global Health & Infectious Diseases Research, Department of Global Health, University of South Florida, Tampa, FL, USA. .,Department of Immunology and Infectious Diseases, Harvard, T.H. Chan School of Public Health, Boston, MA, USA.
| | - Marlon Nuñez
- Center for the Evaluation of Antimalarial Drugs and Vaccines, Tropical Medicine Research/Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama city, Panama
| |
Collapse
|
6
|
Brashear AM, Fan Q, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Barry A, Cui L. Population genomics identifies a distinct Plasmodium vivax population on the China-Myanmar border of Southeast Asia. PLoS Negl Trop Dis 2020; 14:e0008506. [PMID: 32745103 PMCID: PMC7425983 DOI: 10.1371/journal.pntd.0008506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax has become the predominant malaria parasite and a major challenge for malaria elimination in the Greater Mekong Subregion (GMS). Yet, our knowledge about the evolution of P. vivax populations in the GMS is fragmental. We performed whole genome sequencing on 23 P. vivax samples from the China-Myanmar border (CMB) and used 21 high-coverage samples to compare to over 200 samples from the rest of the GMS. Using genome-wide single nucleotide polymorphisms (SNPs), we analyzed population differentiation, genetic structure, migration and potential selection using an array of methods. The CMB parasites displayed a higher proportion of monoclonal infections, and 52% shared over 90% of their genomes in identity-by-descent segments with at least one other sample from the CMB, suggesting preferential expansion of certain parasite strains in this region, likely resulting from the P. vivax outbreaks occurring during this study period. Principal component, admixture, fixation index and phylogenetic analyses all identified that parasites from the CMB were genetically distinct from parasites from eastern parts of the GMS (Cambodia, Laos, Vietnam, and Thailand), whereas the eastern GMS parasite populations were largely undifferentiated. Such a genetic differentiation pattern of the P. vivax populations from the GMS parasite was largely explainable through geographic distance. Using the genome-wide SNPs, we narrowed down to a set of 36 SNPs for differentiating parasites from different areas of the GMS. Genome-wide scans to determine selection in the genome with two statistical methods identified genes potentially under drug selection, including genes associated with antifolate resistance and genes linked to chloroquine resistance in Plasmodium falciparum.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Dalian Institute of Technology, Dalian, Liaoning Province, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Alyssa Barry
- Infection Systems Epidemiology, School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
7
|
Li J, Zhang J, Li Q, Hu Y, Ruan Y, Tao Z, Xia H, Qiao J, Meng L, Zeng W, Li C, He X, Zhao L, Siddiqui FA, Miao J, Yang Z, Fang Q, Cui L. Ex vivo susceptibilities of Plasmodium vivax isolates from the China-Myanmar border to antimalarial drugs and association with polymorphisms in Pvmdr1 and Pvcrt-o genes. PLoS Negl Trop Dis 2020; 14:e0008255. [PMID: 32530913 PMCID: PMC7314094 DOI: 10.1371/journal.pntd.0008255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/24/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vivax malaria is an important public health problem in the Greater Mekong Subregion (GMS), including the China-Myanmar border. Previous studies have found that Plasmodium vivax has decreased sensitivity to antimalarial drugs in some areas of the GMS, but the sensitivity of P. vivax to antimalarial drugs is unclear in the China-Myanmar border. Here, we investigate the drug sensitivity profile and genetic variations for two drug resistance related genes in P. vivax isolates to provide baseline information for future drug studies in the China-Myanmar border. METHODOLOGY/PRINCIPAL FINDINGS A total of 64 P. vivax clinical isolates collected from the China-Myanmar border area were assessed for ex vivo susceptibility to eight antimalarial drugs by the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate, artemether, dihydroartemisinin were 84.2 nM, 34.9 nM, 4.0 nM, 22.3 nM, 41.4 nM, 2.8 nM, 2.1 nM and 2.0 nM, respectively. Twelve P. vivax clinical isolates were found over the cut-off IC50 value (220 nM) for chloroquine resistance. In addition, sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvcrt-o (P. vivax chloroquine resistance transporter-o), and difference in pvmdr1 copy number were studied. Sequencing of the pvmdr1 gene in 52 samples identified 12 amino acid substitutions, among which two (G698S and T958M) were fixed, M908L were present in 98.1% of the isolates, while Y976F and F1076L were present in 3.8% and 78.8% of the isolates, respectively. Amplification of the pvmdr1 gene was only detected in 4.8% of the samples. Sequencing of the pvcrt-o in 59 parasite isolates identified a single lysine insertion at position 10 in 32.2% of the isolates. The pvmdr1 M908L substitutions in pvmdr1 in our samples was associated with reduced sensitivity to chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate and dihydroartemisinin. CONCLUSIONS Our findings depict a drug sensitivity profile and genetic variations of the P. vivax isolates from the China-Myanmar border area, and suggest possible emergence of chloroquine resistant P. vivax isolates in the region, which demands further efforts for resistance monitoring and mechanism studies.
Collapse
Affiliation(s)
- Jiangyan Li
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qian Li
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Xiangtan Blood Center, Xiangtan, Hunan Province, China
| | - Yue Hu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jichen Qiao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lingwen Meng
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xi He
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Luyi Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Faiza A. Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
- * E-mail: (ZY); (QF)
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province, China
- * E-mail: (ZY); (QF)
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
8
|
Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun 2020; 11:953. [PMID: 32075983 PMCID: PMC7031336 DOI: 10.1038/s41467-020-14574-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023] Open
Abstract
Antigenic variation, the capacity to produce a range of variable antigens, is a well-described strategy of Plasmodium and other parasites to evade host immunity. Here, we show that gene amplification is an additional evasion mechanism used by Plasmodium vivax to escape humoral immunity targeting PvDBP, the key ligand involved in reticulocyte invasion. PvDBP gene amplification leads to increased mRNA levels and protects P. vivax in vitro against invasion inhibitory human monoclonal antibodies targeting a conserved binding domain of DBP. Patient samples suggest that parasites with increased pvdbp copy number are able to infect individuals with naturally acquired antibodies highly blocking the binding of PvDBP to the Duffy receptor. These results show that gene copy number variation affect the parasite’s ability to evade anti-PvDBP humoral immunity. Duffy binding protein (DBP) of Plasmodium vivax is important for invasion and is a potential vaccine candidate. Here, the authors show that PvDBP gene amplification protects P vivax in vitro against invasion inhibitory human monoclonal antibodies and is associated to infection of patients with PvDBP binding inhibitory antibodies.
Collapse
|
9
|
A Continuous, Long-Term Plasmodium vivax In Vitro Blood-Stage Culture: What Are We Missing? Trends Parasitol 2017; 33:921-924. [PMID: 28780020 DOI: 10.1016/j.pt.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/20/2022]
Abstract
The recent research efforts to establish a Plasmodium vivax continuous, long-term blood-stage culture have focused on the ideal host cell type. However, this is only part of the story, as the P. vivax intraerythrocytic life cycle is complex. A successful, long-term, robust culture system will depend on a multifaceted approach combining the ideal cell type and parasite isolates, and the culture conditions.
Collapse
|