1
|
Liu Y, Zhang T, Chen SB, Cui YB, Wang SQ, Zhang HW, Shen HM, Chen JH. Retrospective analysis of Plasmodium vivax genomes from a pre-elimination China inland population in the 2010s. Front Microbiol 2023; 14:1071689. [PMID: 36846776 PMCID: PMC9948256 DOI: 10.3389/fmicb.2023.1071689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction In malaria-free countries, imported cases are challenging because interconnections with neighboring countries with higher transmission rates increase the risk of parasite reintroduction. Establishing a genetic database for rapidly identifying malaria importation or reintroduction is crucial in addressing these challenges. This study aimed to examine genomic epidemiology during the pre-elimination stage by retrospectively reporting whole-genome sequence variation of 10 Plasmodium vivax isolates from inland China. Methods The samples were collected during the last few inland outbreaks from 2011 to 2012 when China implemented a malaria control plan. After next-generation sequencing, we completed a genetic analysis of the population, explored the geographic specificity of the samples, and examined clustering of selection pressures. We also scanned genes for signals of positive selection. Results China's inland populations were highly structured compared to the surrounding area, with a single potential ancestor. Additionally, we identified genes under selection and evaluated the selection pressure on drug-resistance genes. In the inland population, positive selection was detected in some critical gene families, including sera, msp3, and vir. Meanwhile, we identified selection signatures in drug resistance, such as ugt, krs1, and crt, and noticed that the ratio of wild-type dhps and dhfr-ts increased after China banned sulfadoxine-pyrimethamine (SP) for decades. Discussion Our data provides an opportunity to investigate the molecular epidemiology of pre-elimination inland malaria populations, which exhibited lower selection pressure on invasion and immune evasion genes than neighbouring areas, but increased drug resistance in low transmission settings. Our results revealed that the inland population was severely fragmented with low relatedness among infections, despite a higher incidence of multiclonal infections, suggesting that superinfection or co-transmission events are rare in low-endemic circumstances. We identified selective signatures of resistance and found that the proportion of susceptible isolates fluctuated in response to the prohibition of specific drugs. This finding is consistent with the alterations in medication strategies during the malaria elimination campaign in inland China. Such findings could provide a genetic basis for future population studies, assessing changes in other pre-elimination countries.
Collapse
Affiliation(s)
- Ying Liu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Tao Zhang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shu-Qi Wang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Hong-Wei Zhang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
3
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
4
|
Novel insights from the Plasmodium falciparum sporozoite-specific proteome by probabilistic integration of 26 studies. PLoS Comput Biol 2021; 17:e1008067. [PMID: 33930021 PMCID: PMC8115857 DOI: 10.1371/journal.pcbi.1008067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/12/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species, the causative agent of malaria, have a complex life cycle involving two hosts. The sporozoite life stage is characterized by an extended phase in the mosquito salivary glands followed by free movement and rapid invasion of hepatocytes in the human host. This transmission stage has been the subject of many transcriptomics and proteomics studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian data integration to determine which proteins are not only present in sporozoites but are also specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies were weighted for how representative they are for sporozoites, based on a carefully assembled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent during the sporozoite life stage. Of 5418 Pf genes for which expression data were available at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and 90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear metabolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions. They include PF3D7_0104100 that we identified to be homologous to the prominin family, which in human has been related to a quiescent state of cancer cells. We document high levels of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-conserved sporozoite proteins that elicit antibodies and that together can serve as markers for previous exposure. Our understanding of sporozoite biology benefits from identifying key pathways that are enriched during this life stage. This work can guide studies of molecular mechanisms underlying sporozoite biology and potential well-conserved targets for marker and drug development. When a person is bitten by an infectious malaria mosquito, sporozoites are injected into the skin with mosquito saliva. These sporozoites then travel to the liver, invade hepatocytes and multiply before the onset of the symptom-causing blood stage of malaria. By integrating published data, we contrast sporozoite protein expression with other life stages to filter out the unique features of sporozoites that help us understand this stage. We used a “guideline” that we derived from the literature on individual proteins so that we knew which proteins should be present or absent at the sporozoite stage, allowing us to weigh 26 data sets for their relevance to sporozoites. Among the newly discovered sporozoite-specific genes are candidates for fatty acid synthesis while others might play a role keeping the sporozoites in an inactive state in the mosquito salivary glands. Furthermore, we show that most sporozoite-specific proteins are genetically more variable than non-sporozoite proteins. We identify a set of conserved sporozoite proteins against which antibodies can serve as markers of recent exposure to sporozoites or that can serve as vaccine candidates. Our predictions of sporozoite-specific proteins and the assignment of previously unknown functions give new insights into the biology of this life stage.
Collapse
|
5
|
Chen JH, Fen J, Zhou XN. From 30 million to zero malaria cases in China: lessons learned for China-Africa collaboration in malaria elimination. Infect Dis Poverty 2021; 10:51. [PMID: 33875017 PMCID: PMC8055304 DOI: 10.1186/s40249-021-00839-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria was once one of the most serious public health problems in China, with more than 30 million malaria cases annually before 1949. However, the disease burden has sharply declined and the epidemic areas has shrunken after the implementation of an integrated malaria control and elimination strategy, especially since 2000. Till now, China has successfully scaled up its efforts to become malaria-free and is currently being evaluated for malaria-free certification by the WHO. In the battle against malaria, China's efforts have spanned generations, reducing from an incidence high of 122.9/10 000 (6.97 million cases) in 1954 to 0.06/10 000 (7855 cases) in 2010. In 2017, for the first time, China reached zero indigenous case of malaria, putting the country on track to record three consecutive years of zero transmission by 2020, accoding to the National Malaria Elimination Action Plan (2010-2020). China's efforts to eliminate malaria is impressive, and the country is dedicated to sharing its lessons learned in malaria elimination-including, but not limited to, the application of novel genetics-based approaches-with other nations through new initiatives. China will promote international relationships and establish collaborative platforms on a wide range of topics in roughly 65 countries, including 20 African nations. China's experience in applying innovative genetics-based approaches and tools to characterize malaria parasite populations, including surveillance of markers related to drug resistance, categorization of cases as indigenous or imported, and objective identification of the likely sources of infections to inform efforts towards malaria control and elimination in Africa could offer game-changing results when applied to settings with ongoing transmission.
Collapse
Affiliation(s)
- Jun-Hu Chen
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jun Fen
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiao-Nong Zhou
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
González-Cerón L, Cebrián-Carmona J, Mesa-Valle CM, García-Maroto F, Santillán-Valenzuela F, Garrido-Cardenas JA. Plasmodium vivax Cysteine-Rich Protective Antigen Polymorphism at Exon-1 Shows Recombination and Signatures of Balancing Selection. Genes (Basel) 2020; 12:genes12010029. [PMID: 33379267 PMCID: PMC7823296 DOI: 10.3390/genes12010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax Cysteine-Rich Protective Antigen (CyRPA) is a merozoite protein participating in the parasite invasion of human reticulocytes. During natural P. vivax infection, antibody responses against PvCyRPA have been detected. In children, low anti-CyRPA antibody titers correlated with clinical protection, which suggests this protein as a potential vaccine candidate. This work analyzed the genetic and amino acid diversity of pvcyrpa in Mexican and global parasites. Consensus coding sequences of pvcyrpa were obtained from seven isolates. Other sequences were extracted from a repository. Maximum likelihood phylogenetic trees, genetic diversity parameters, linkage disequilibrium (LD), and neutrality tests were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. In 22 sequences from Southern Mexico, two synonymous and 21 nonsynonymous mutations defined nine private haplotypes. These parasites had the highest LD-R2 index and the lowest nucleotide diversity compared to isolates from South America or Asia. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity and Rm values than those of exon-2. Exon-1 had significant positive values for Tajima's D, β-α values, and for the Z (HA: dN > dS) and MK tests. These patterns were similar for parasites of different origin. The polymorphic amino acid residues at PvCyRPA resembled the conformational B-cell peptides reported in PfCyRPA. Diversity at pvcyrpa exon-1 is caused by mutation and recombination. This seems to be maintained by balancing selection, likely due to selective immune pressure, all of which merit further study.
Collapse
MESH Headings
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cysteine/genetics
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Exons/genetics
- Host-Parasite Interactions/genetics
- Host-Parasite Interactions/immunology
- Humans
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Mutation
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Plasmodium vivax/pathogenicity
- Polymorphism, Genetic/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombination, Genetic/immunology
- Selection, Genetic/immunology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico;
- Correspondence: (L.G.-C.); (J.A.G.-C.); Tel.: +52-962-6262219 (L.G.-C.); +34-950-215894 (J.A.G.-C.)
| | - José Cebrián-Carmona
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; (J.C.-C.); (C.M.M.-V.)
| | - Concepción M. Mesa-Valle
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; (J.C.-C.); (C.M.M.-V.)
| | | | - Frida Santillán-Valenzuela
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico;
| | - Jose Antonio Garrido-Cardenas
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; (J.C.-C.); (C.M.M.-V.)
- Correspondence: (L.G.-C.); (J.A.G.-C.); Tel.: +52-962-6262219 (L.G.-C.); +34-950-215894 (J.A.G.-C.)
| |
Collapse
|
7
|
Kassegne K, Komi Koukoura K, Shen HM, Chen SB, Fu HT, Chen YQ, Zhou XN, Chen JH, Cheng Y. Genome-Wide Analysis of the Malaria Parasite Plasmodium falciparum Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes. Front Immunol 2020; 11:552698. [PMID: 33193320 PMCID: PMC7645038 DOI: 10.3389/fimmu.2020.552698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria is a public health concern worldwide, and Togo has proven to be no exception. Effective approaches to provide information on biological insights for disease elimination are therefore a research priority. Local selection on malaria pathogens is due to multiple factors including host immunity. We undertook genome-wide analysis of sequence variation on a sample of 10 Plasmodium falciparum (Pf) clinical isolates from Togo to identify local-specific signals of selection. Paired-end short-read sequences were mapped and aligned onto > 95% of the 3D7 Pf reference genome sequence in high fold coverage. Data on 266 963 single nucleotide polymorphisms were obtained, with average nucleotide diversity π = 1.79 × 10−3. Both principal component and neighbor-joining tree analyses showed that the Togo parasites clustered according to their geographic (Africa) origin. In addition, the average genome-wide diversity of Pf from Togo was much higher than that from other African samples. Tajima’s D value of the Togo isolates was −0.56, suggesting evidence of directional selection and/or recent population expansion. Against this background, within-population analyses identifying loci of balancing and recent positive selections evidenced that host immunity has been the major selective agent. Importantly, 87 and 296 parasite antigen genes with Tajima’s D values > 1 and in the top 1% haplotype scores, respectively, include a significant representation of membrane proteins at the merozoite stage that invaded red blood cells (RBCs) and parasitized RBCs surface proteins that play roles in immunoevasion, adhesion, or rosetting. This is consistent with expectations that elevated signals of selection due to allele-specific acquired immunity are likely to operate on antigenic targets. Collectively, our data suggest a recent expansion of Pf population in Togo and evidence strong host immune selection on membrane/surface antigens reflected in signals of balancing/positive selection of important gene loci. Findings from this study provide a fundamental basis to engage studies for effective malaria control in Togo.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Komi Komi Koukoura
- Laboratoire des Sciences Biomédicales, Alimentaires et Santé Environnementale, Département des Analyses Biomédicales, Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hai-Tian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong-Quan Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale. Plasmodium vivax is the most geographically widespread parasite species that causes malaria in humans. Although it occurs in Africa as a member of a mix of Plasmodium species, P. vivax is dominant in other parts of the world outside of Africa (e.g., Brazil). It was previously thought that most African populations were immune to P. vivax infections due to the absence of Duffy antigen chemokine receptor (DARC) gene expression required for erythrocyte invasion. However, several recent reports have indicated the emergence and potential spread of P. vivax across human populations in Africa. Compared to Southeast Asia and South America where P. vivax is highly endemic, data on polymorphisms in erythrocyte binding gene candidates of P. vivax from Africa is limited. Filling this knowlege gap is critical for identifying functional genes in erythrocyte invasion, biomarkers for tracking the P. vivax isolates from Africa, as well as potential gene targets for vaccine development. This paper examined the level of genetic polymorphisms in a panel of 43 potential erythrocyte binding protein genes based on whole genome sequences and described transmission patterns of P. vivax infections from different study sites in Ethiopia based on the genetic variants. Our analyses showed that chromosomes 9 and 10 of the P. vivax genomes isolated in Ethiopia had the most high-quality genetic polymorphisms. Among all erythrocyte binding protein gene candidates, the merozoite surface proteins 1 and merozoite surface protein 3 showed high levels of polymorphism. MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. The expansion of the Duffy binding protein and merozoite surface protein 3 gene copies was an independent process among the P. vivax lineages in Ethiopia. Various levels of gene flow were observed even at a smaller geographical scale. Our study provided baseline data for future comparison with P. vivax in Duffy negative individuals and help develop a panel of genetic markers that are informative at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
- * E-mail: (AF); (GY); (EL)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| |
Collapse
|
9
|
Murhandarwati EEH, Herningtyas EH, Puspawati P, Mau F, Chen SB, Shen HM, Chen JH. Genetic diversity of Merozoite surface protein 1-42 (MSP1-42) fragment of Plasmodium vivax from Indonesian isolates: Rationale implementation of candidate MSP1 vaccine. INFECTION GENETICS AND EVOLUTION 2020; 85:104573. [PMID: 32987191 DOI: 10.1016/j.meegid.2020.104573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Morbidity and mortality related to malaria in Indonesia are attributed to both Plasmodium falciparum and P. vivax parasites. In addition to vaccines for P. falciparum, vaccines against P. vivax are urgently needed for the prevention of the disease. An extensively studied antigen is the carboxyl-terminus of the 42 kDa region of P. vivax merozoite surface protein-1 (PvMSP1-42). The design of a vaccine based on this antigen requires an understanding of the extent of polymorphism. However, there is no information on the genetic diversity of the antigen in Indonesia. This study aimed to profile the diversity of PvMSP1-42 and its two subdomains (PvMSP1-33 and PvMSP1-19) among Indonesian P. vivax isolates. A total of 52 P. vivax-infected blood samples were collected from patients in two different endemic areas in Indonesia: Banjarmasin (Kalimantan) and Sumba Timur (Nusa Tenggara Timur). The polymorphic characteristics and natural selection of PvMSP1-42 were analyzed using the DnaSP, MEGA, and Structure software. Thirty distinct haplotypes of PvMSP1-42 were identified. They displayed amino acid changes compared to the reference PVP01 sequence. Most of the mutations were concentrated in the 33 kDa fragment. PvMSP1-42 of the Indonesian isolates appeared to be under positive selection. Recombination may also play a role in the resulting genetic diversity of PvMSP1. In conclusion, PvMSP1-42 of Indonesian isolates displayed allelic polymorphisms caused by mutation, recombination, and positive selection. These results will aid the understanding of the P. vivax population in Indonesia and to develop a PvMSP1 based vaccine against P. vivax.
Collapse
Affiliation(s)
- E Elsa Herdiana Murhandarwati
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People's Republic of China; Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - E Henny Herningtyas
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Fridolina Mau
- Institute of Research and Development Waikabubak, Sumba Barat, Indonesia
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People's Republic of China; The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People's Republic of China; The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People's Republic of China; The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
10
|
Brashear AM, Fan Q, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Barry A, Cui L. Population genomics identifies a distinct Plasmodium vivax population on the China-Myanmar border of Southeast Asia. PLoS Negl Trop Dis 2020; 14:e0008506. [PMID: 32745103 PMCID: PMC7425983 DOI: 10.1371/journal.pntd.0008506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax has become the predominant malaria parasite and a major challenge for malaria elimination in the Greater Mekong Subregion (GMS). Yet, our knowledge about the evolution of P. vivax populations in the GMS is fragmental. We performed whole genome sequencing on 23 P. vivax samples from the China-Myanmar border (CMB) and used 21 high-coverage samples to compare to over 200 samples from the rest of the GMS. Using genome-wide single nucleotide polymorphisms (SNPs), we analyzed population differentiation, genetic structure, migration and potential selection using an array of methods. The CMB parasites displayed a higher proportion of monoclonal infections, and 52% shared over 90% of their genomes in identity-by-descent segments with at least one other sample from the CMB, suggesting preferential expansion of certain parasite strains in this region, likely resulting from the P. vivax outbreaks occurring during this study period. Principal component, admixture, fixation index and phylogenetic analyses all identified that parasites from the CMB were genetically distinct from parasites from eastern parts of the GMS (Cambodia, Laos, Vietnam, and Thailand), whereas the eastern GMS parasite populations were largely undifferentiated. Such a genetic differentiation pattern of the P. vivax populations from the GMS parasite was largely explainable through geographic distance. Using the genome-wide SNPs, we narrowed down to a set of 36 SNPs for differentiating parasites from different areas of the GMS. Genome-wide scans to determine selection in the genome with two statistical methods identified genes potentially under drug selection, including genes associated with antifolate resistance and genes linked to chloroquine resistance in Plasmodium falciparum.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Dalian Institute of Technology, Dalian, Liaoning Province, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Alyssa Barry
- Infection Systems Epidemiology, School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
11
|
Verzier LH, Coyle R, Singh S, Sanderson T, Rayner JC. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl Trop Dis 2019; 13:e0007470. [PMID: 31158222 PMCID: PMC6564043 DOI: 10.1371/journal.pntd.0007470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/13/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms.
Collapse
Affiliation(s)
- Lisa H. Verzier
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Rachael Coyle
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Shivani Singh
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Theo Sanderson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Julian C. Rayner
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
12
|
Shen HM, Chen SB, Cui YB, Xu B, Kassegne K, Abe EM, Wang Y, Chen JH. Whole-genome sequencing and analysis of Plasmodium falciparum isolates from China-Myanmar border area. Infect Dis Poverty 2018; 7:118. [PMID: 30445995 PMCID: PMC6240207 DOI: 10.1186/s40249-018-0493-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND China has made progress in malaria control and aims to eliminate malaria nationwide, but implementing effective interventions along the border regions remain a huge task. The Plasmodium falciparum cases imported from Southeast Asia has frequently reported especially in the China-Myanmar border (CMB) area. Though, information is scant on P. falciparum genetic variability in this area. METHODS This study reported P. falciparum isolates genome sequence of six clinical isolates in the CMB area. Furthermore, we estimated the nucleotide diversity, Watterson's estimator and Tajima's D value for the whole genome mutation rate in slide window. RESULTS Our data were aligned onto 96.05-98.61% of the reference 3D7 genome in high fold coverages. Principal component analysis result showed that P. falciparum clustered generally according to their geographic origin. A total of 91 genes were identified as positive selection with Ka/Ks ratio significantly higher than 1, and most of them were multigene families encoding variant surface antigens (VSAs) such as var, rif and stevor. The enrichment of the positive selection on VSA genes implied that the environment complexity subjected CMB's P. falciparum to more pressure for survival. CONCLUSIONS Our research suggests that greater genetic diversity in CMB area and the positive selection signals in VSA genes, which allow P. falciparum to fit the host immune system well and aggravate the difficulty of treatment. Meanwhile, results obtained from this study will provide the fundamental basis for P. falciparum population genomic research in CMB area.
Collapse
Affiliation(s)
- Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Yue Wang
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013 China
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433 China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| |
Collapse
|
13
|
DeCandia AL, Dobson AP, vonHoldt BM. Toward an integrative molecular approach to wildlife disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:798-807. [PMID: 29380417 PMCID: PMC7162296 DOI: 10.1111/cobi.13083] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Accepted: 01/19/2018] [Indexed: 05/03/2023]
Abstract
Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern.
Collapse
Affiliation(s)
- Alexandra L. DeCandia
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| | - Bridgett M. vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton University106A Guyot HallPrincetonNJ 08544U.S.A.
| |
Collapse
|
14
|
Garzón-Ospina D, Buitrago SP, Ramos AE, Patarroyo MA. Identifying Potential Plasmodium vivax Sporozoite Stage Vaccine Candidates: An Analysis of Genetic Diversity and Natural Selection. Front Genet 2018; 9:10. [PMID: 29422913 PMCID: PMC5788960 DOI: 10.3389/fgene.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Parasite antigen genetic diversity represents a great obstacle when designing a vaccine against malaria caused by Plasmodium vivax. Selecting vaccine candidate antigens has been focused on those fulfilling a role in invasion and which are conserved, thus avoiding specific-allele immune responses. Most antigens described to date belong to the blood stage, thereby blocking parasite development within red blood cells, whilst studying antigens from other stages has been quite restricted. Antigens from different parasite stages are required for developing a completely effective vaccine; thus, pre-erythrocyte stage antigens able to block the first line of infection becoming established should also be taken into account. However, few antigens from this stage have been studied to date. Several P. falciparum sporozoite antigens are involved in invasion. Since 77% of genes are orthologous amongst Plasmodium parasites, P. vivax sporozoite antigen orthologs to those of P. falciparum might be present in its genome. Although these genes might have high genetic diversity, conserved functionally-relevant regions (ideal for vaccine development) could be predicted by comparing genetic diversity patterns and evolutionary rates. This study was thus aimed at searching for putative P. vivax sporozoite genes so as to analyse their genetic diversity for determining their potential as vaccine candidates. Several DNA sequence polymorphism estimators were computed at each locus. The evolutionary force (drift, selection and recombination) drawing the genetic diversity pattern observed was also determined by using tests based on polymorphism frequency spectrum as well as the type of intra- and inter-species substitutions. Likewise, recombination was assessed both indirectly and directly. The results showed that sporozoite genes were more conserved than merozoite genes evaluated to date. Putative domains implied in cell traversal, gliding motility and hepatocyte interaction had a negative selection signal, being conserved amongst different species in the genus. PvP52, PvP36, PvSPATR, PvPLP1, PvMCP1, PvTLP, PvCelTOS, and PvMB2 antigens or functionally restricted regions within them would thus seem promising vaccine candidates and could be used when designing a pre-erythrocyte and/or multi-stage vaccine against P. vivax to avoid allele-specific immune responses that could reduce vaccine efficacy.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sindy P Buitrago
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Andrea E Ramos
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Zhou X, Tambo E, Su J, Fang Q, Ruan W, Chen JH, Yin MB, Zhou XN. Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:473-480. [PMID: 29103262 PMCID: PMC5678462 DOI: 10.3347/kjp.2017.55.5.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene (Pv MSP142) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that PvMSP142 has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of PvMSP133. Our results also demonstrated that PvMSP142 of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.
Collapse
Affiliation(s)
- Xia Zhou
- Medical College of Soochow University, Suzhou 215123, P. R. China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, P. R. China
| | - Ernest Tambo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, P. R. China
- Department of Biochemistry, Higher Institute of Health Sciences, Université des Montagnes, Bangangté BP208, Cameroon
| | - Jing Su
- School of Life Science, Fudan University, Shanghai 200438, P. R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Wei Ruan
- Department of Parasitic Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, P. R. China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, P. R. China
| | - Ming-Bo Yin
- School of Life Science, Fudan University, Shanghai 200438, P. R. China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, P. R. China
| |
Collapse
|