1
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
Waterhouse RM, Aganezov S, Anselmetti Y, Lee J, Ruzzante L, Reijnders MJMF, Feron R, Bérard S, George P, Hahn MW, Howell PI, Kamali M, Koren S, Lawson D, Maslen G, Peery A, Phillippy AM, Sharakhova MV, Tannier E, Unger MF, Zhang SV, Alekseyev MA, Besansky NJ, Chauve C, Emrich SJ, Sharakhov IV. Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies. BMC Biol 2020; 18:1. [PMID: 31898513 PMCID: PMC6939337 DOI: 10.1186/s12915-019-0728-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from ‘finished’. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. Results We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.
Collapse
Affiliation(s)
- Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Sergey Aganezov
- Department of Computer Science, Princeton University, Princeton, NJ, 08450, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Jiyoung Lee
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Sèverine Bérard
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Phillip George
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthew W Hahn
- Departments of Biology and Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Department of Medical Entomology and Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Ashley Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia, 634050
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Unité Mixte de Recherche 5558 Centre National de la Recherche Scientifique, 69622, Villeurbanne, France.,Institut national de recherche en informatique et en automatique, Montbonnot, 38334, Grenoble, Rhône-Alpes, France
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Simo V Zhang
- Departments of Biology and Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Max A Alekseyev
- Department of Mathematics and Computational Biology Institute, George Washington University, Ashburn, VA, 20147, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Igor V Sharakhov
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia, 634050.
| |
Collapse
|
6
|
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J 2018; 17:276. [PMID: 30060747 PMCID: PMC6065146 DOI: 10.1186/s12936-018-2428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 08/10/2023] Open
Abstract
Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Gayane H Karagyan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.,Chair of Zoology, Yerevan State University, Yerevan, Armenia
| | | | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Artemov GN, Bondarenko SM, Naumenko AN, Stegniy VN, Sharakhova MV, Sharakhov IV. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome. BMC Genomics 2018; 19:278. [PMID: 29688842 PMCID: PMC5914054 DOI: 10.1186/s12864-018-4663-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Malaria mosquitoes have had a remarkable stability in the number of chromosomes in their karyotype (2n = 6) during 100 million years of evolution. Moreover, autosomal arms were assumed to maintain their integrity even if their associations with each other changed via whole-arm translocations. Here we use high-coverage comparative physical genome mapping of three Anopheles species to test the extent of evolutionary conservation of chromosomal arms in malaria mosquitoes. Results In this study, we developed a physical genome map for Anopheles atroparvus, one of the dominant malaria vectors in Europe. Using fluorescence in situ hybridization (FISH) of DNA probes with the ovarian nurse cell polytene chromosomes and synteny comparison, we anchored 56 genomic scaffolds to the An. atroparvus chromosomes. The obtained physical map represents 89.6% of the An. atroparvus genome. This genome has the second highest mapping coverage among Anophelinae assemblies after An. albimanus, which has 98.2% of the genome assigned to its chromosomes. A comparison of the An. atroparvus, An. albimanus, and An. gambiae genomes identified partial-arm translocations between the autosomal arms that break down the integrity of chromosome elements in evolution affecting the structure of the genetic material in the pericentromeric regions. Unlike An. atroparvus and An. albimanus, all chromosome elements of An. gambiae are fully syntenic with chromosome elements of the putative ancestral Anopheles karyotype. We also detected nonrandom distribution of large conserved synteny blocks and confirmed a higher rate of inversion fixation in the X chromosome compared with autosomes. Conclusions Our study demonstrates the power of physical mapping for understanding the genome evolution in malaria mosquitoes. The results indicate that syntenic relationships among chromosome elements of Anopheles species have not been fully preserved because of multiple partial-arm translocations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4663-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Anastasia N Naumenko
- Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|