1
|
Li M, Liu H, Tang L, Yang H, Bustos MDG, Tu H, Ringwald P. Genetic characteristics of P. falciparum parasites collected from 2012 to 2016 and anti-malaria resistance along the China-Myanmar border. PLoS One 2023; 18:e0293590. [PMID: 37948402 PMCID: PMC10637670 DOI: 10.1371/journal.pone.0293590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/16/2023] [Indexed: 11/11/2023] Open
Abstract
BACKGROUNDS The therapeutic efficacy studies of DHA-PIP for uncomplicated Plasmodium falciparum patients were implemented from 2012 to 2016 along China (Yunnan province)-Myanmar border, which verified the high efficacy of DHA-PIP. With the samples collected in these studies, the genetic characteristics of P. falciparum parasites based on in vivo parasite clearance time (PCT) was investigated to explore if these parasites had developed resistance to DHA and PIP at molecular level. METHODS The genetic characteristics were investigated based on K13 genotypes, copy numbers of genes pfpm2 and pfmdr1, and nine microsatellite loci (Short Tandem Repeats, STR) flanking the K13 gene on chromosome 13. The PCT 50s were compared based on different K13 genotypes, sites, periods and copy numbers. RESULTS In the NW (North-West Yunnan province bordering with Myanmar) region, F446I was the main K13 genotype. No significant differences for PCT 50s presented among three K13 genotypes. In SW (South-West Yunnan province bordering with Myanmar) region, only wild K13 genotype was detected in all parasite isolates whose PCT 50s was significantly longer than those in NW region. For the copy numbers of genes, parasite isolates containing multiple copies of pfmdr1 gene were found in both regions, but only single copy of pfpm2 gene was detected. Though the prevalence of parasite isolates with multiple copies of pfmdr1 gene in SW region was higher than that in NW region, no difference in PCT 50s were presented between isolates with single and multiple copies of pfmdr1 gene. The median He values of F446I group and Others (Non-F446I K13 mutation) group were 0.08 and 0.41 respectively. The mean He values of ML group (Menglian County in SW) and W (wild K13 genotype in NW) group were 0 and 0.69 respectively. The mean Fst values between ML and W groups were significantly higher than the other two K13 groups. CONCLUSIONS P. falciparum isolates in NW and SW regions had very different genetic characteristics. The F446I was hypothesized to have independently appeared and spread in NW region from 2012 and 2016. The high susceptibility of PIP had ensured the efficacy of DHA-PIP in vivo. Multiple copy numbers of pfmdr1 gene might be a potential cause of prolonged clearance time of ACTs drugs along China-Myanmar border. TRIAL REGISTRATION Trial registration: ISRCTN, ISRCTN 11775446. Registered 17 April 2020-Retrospectively registered, the registered name was Investigating resistance to DHA-PIP for the treatment of Plasmodium falciparum malaria and chloroquine for the treatment of Plasmodium vivax malaria in Yunnan, China. http://www.isrctn.com/ISRCTN11775446.
Collapse
Affiliation(s)
- Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Hui Liu
- Yunnan Institute of Parasitic Diseases, Yunnan, 665000, China
| | - Linhua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Henglin Yang
- Yunnan Institute of Parasitic Diseases, Yunnan, 665000, China
| | | | - Hong Tu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Beijing, China
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Pascal Ringwald
- Coordinator Director Office, Global Malaria Programme, Geneva, Swizerland
| |
Collapse
|
2
|
Murmu LK, Barik TK. An analysis of Plasmodium falciparum-K13 mutations in India. J Parasit Dis 2022; 46:296-303. [PMID: 35299922 PMCID: PMC8901923 DOI: 10.1007/s12639-021-01425-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022] Open
Abstract
Malaria is one of the deadliest parasitic diseases in human. Currently, Artemisinin-based combination therapy is considered as the gold standard and most common treatment option. However, the origin and transmission of Plasmodium falciparum from the Greater Mekong Subregion, which has decreased artemisinin (ART) sensitivity, has sparked global concern. The reduced ART sensitivity has been associated with mutations in the Atpase6 and Kelch13 propeller domain of Plasmodium falciparum. A molecular marker is critically needed to monitor the spread of artemisinin resistance. In this article, we reviewed the k13 mutations and potential marker for ART resistance in India. There have been fourteen mutations identified, three of which have been validated by the World Health Organization (WHO) as artemisinin resistance mutations (F446I, R561H/C, and R539T). Among them, the role of F446I and R561H/C in ART resistance is conflicting. R539T and G625R mutation has been identified as an ART- resistance marker in India.
Collapse
Affiliation(s)
- Laxman Kumar Murmu
- P.G. Department of Zoology, Berhampur University, Berhampur, Ganjam, 760007 Odisha India
| | - Tapan Kumar Barik
- P.G. Department of Zoology, Berhampur University, Berhampur, Ganjam, 760007 Odisha India
| |
Collapse
|
3
|
Mairet-Khedim M, Leang R, Marmai C, Khim N, Kim S, Ke S, Kauy C, Kloeung N, Eam R, Chy S, Izac B, Mey Bouth D, Dorina Bustos M, Ringwald P, Ariey F, Witkowski B. Clinical and In Vitro Resistance of Plasmodium falciparum to Artesunate-Amodiaquine in Cambodia. Clin Infect Dis 2021; 73:406-413. [PMID: 32459308 PMCID: PMC8326543 DOI: 10.1093/cid/ciaa628] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Artesunate-amodiaquine is a potential therapy for uncomplicated malaria in Cambodia. METHODS Between September 2016 and January 2017, artesunate-amodiaquine efficacy and safety were evaluated in a prospective, open-label, single-arm observational study at health centers in Mondulkiri, Pursat, and Siem Reap Provinces, Cambodia. Adults and children with microscopically confirmed Plasmodium falciparum malaria received oral artesunate-amodiaquine once daily for 3 days plus single-dose primaquine, with follow-up on days 7, 14, 21, and 28. The primary outcome was day-28 polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR). An amodiaquine parasite survival assay (AQSA) was developed and applied to whole genome sequencing results to evaluate potential amodiaquine resistance molecular markers. RESULTS In 63 patients, day-28 PCR-adjusted ACPR was 81.0% (95% confidence interval [CI], 68.9-88.7). Day 3 parasite positivity rate was 44.4% (28/63; 95% CI, 31.9-57.5). All 63 isolates had the K13(C580Y) marker for artemisinin resistance; 79.4% (50/63) had Pfpm2 amplification. The AQSA resistance phenotype (≥45% parasite survival) was expressed in 36.5% (23/63) of isolates and was significantly associated with treatment failure (P = .0020). Pfmdr1 mutant haplotypes were N86/184F/D1246, and Pfcrt was CVIET or CVIDT at positions 72-76. Additional Pfcrt mutations were not associated with amodiaquine resistance, but the G353V mutant allele was associated with ACPR compared to Pfmdr1 haplotypes harboring F1068L or S784L/R945P mutations (P = .030 and P = .0004, respectively). CONCLUSIONS For uncomplicated falciparum malaria in Cambodia, artesunate-amodiaquine had inadequate efficacy owing to amodiaquine-resistant P. falciparum. Amodiaquine resistance was not associated with previously identified molecular markers.
Collapse
Affiliation(s)
- Melissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Camille Marmai
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Sopheakvatey Ke
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Chhayleang Kauy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Nimol Kloeung
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Rotha Eam
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| | - Brigitte Izac
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | | | | | | | - Frederic Ariey
- INSERM 1016, Institut Cochin, Université of Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob Agents Chemother 2021; 65:e0099021. [PMID: 34097488 PMCID: PMC8284440 DOI: 10.1128/aac.00990-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Liezl Gibhard
- H3D, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition. mBio 2020; 11:mBio.02312-20. [PMID: 33173001 PMCID: PMC7667033 DOI: 10.1128/mbio.02312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
Collapse
|
6
|
Zaw MT, Lin Z, Emran NA. Importance of kelch 13 C580Y mutation in the studies of artemisinin resistance in Plasmodium falciparum in Greater Mekong Subregion. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:676-681. [DOI: 10.1016/j.jmii.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
|
7
|
Wong HN, Padín-Irizarry V, van der Watt ME, Reader J, Liebenberg W, Wiesner L, Smith P, Eribez K, Winzeler EA, Kyle DE, Birkholtz LM, Coertzen D, Haynes RK. Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies-Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Front Chem 2020; 7:901. [PMID: 31998692 PMCID: PMC6967409 DOI: 10.3389/fchem.2019.00901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
We have demonstrated previously that amino-artemisinins including artemiside and artemisone in which an amino group replaces the oxygen-bearing substituents attached to C-10 of the current clinical artemisinin derivatives dihydroartemisinin (DHA), artemether and artesunate, display potent activities in vitro against the asexual blood stages of Plasmodium falciparum (Pf). In particular, the compounds are active against late blood stage Pf gametocytes, and are strongly synergistic in combination with the redox active drug methylene blue. In order to fortify the eventual selection of optimum amino-artemisinins for development into new triple combination therapies also active against artemisinin-resistant Pf mutants, we have prepared new amino-artemisinins based on the easily accessible and inexpensive DHA-piperazine. The latter was converted into alkyl- and aryl sulfonamides, ureas and amides. These derivatives were screened together with the comparator drugs DHA and the hitherto most active amino-artemisinins artemiside and artemisone against asexual and sexual blood stages of Pf and liver stage P. berghei (Pb) sporozoites. Several of the new amino-artemisinins bearing aryl-urea and -amide groups are potently active against both asexual, and late blood stage gametocytes (IC50 0.4-1.0 nM). Although the activities are superior to those of artemiside (IC50 1.5 nM) and artemisone (IC50 42.4 nM), the latter are more active against the liver stage Pb sporozoites (IC50 artemisone 28 nM). In addition, early results indicate these compounds tend not to display reduced susceptibility against parasites bearing the Pf Kelch 13 propeller domain C580Y mutation characteristic of artemisinin-resistant Pf. Thus, the advent of the amino-artemisinins including artemiside and artemisone will enable the development of new combination therapies that by virtue of the amino-artemisinin component itself will possess intrinsic transmission-blocking capabilities and may be effective against artemisinin resistant falciparum malaria.
Collapse
Affiliation(s)
- Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Vivian Padín-Irizarry
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Wilna Liebenberg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Peter Smith
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Korina Eribez
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A Winzeler
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dennis E Kyle
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Dina Coertzen
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Foguim Tsombeng F, Gendrot M, Robert MG, Madamet M, Pradines B. Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in Southeast Asia, reliable to monitor resistance surveillance in Africa? Malar J 2019; 18:285. [PMID: 31443646 PMCID: PMC6708145 DOI: 10.1186/s12936-019-2916-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in the propeller domain of Plasmodium falciparum kelch 13 (Pfk13) gene are associated with artemisinin resistance in Southeast Asia. Artemisinin resistance is defined by increased ring survival rate and delayed parasite clearance half-life in patients. Additionally, an amplification of the Plasmodium falciparum plasmepsin II gene (pfpm2), encoding a protease involved in hemoglobin degradation, has been found to be associated with reduced in vitro susceptibility to piperaquine in Cambodian P. falciparum parasites and with dihydroartemisinin–piperaquine failures in Cambodia. The World Health Organization (WHO) has recommended the use of these two genes to track the emergence and the spread of the resistance to dihydroartemisinin–piperaquine in malaria endemic areas. Although the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, few reports on clinical failures suggest that k13 and pfpm2 would not be the only genes involved in artemisinin and piperaquine resistance. It is imperative to identify molecular markers or drug resistance genes that associate with artemisinin and piperaquine in Africa. K13 polymorphisms and Pfpm2 copy number variation analysis may not be sufficient for monitoring the emergence of dihydroartemisinin–piperaquine resistance in Africa. But, these markers should not be ruled out for tracking the emergence of resistance.
Collapse
Affiliation(s)
- Francis Foguim Tsombeng
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
9
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
10
|
Evolution and Genetic Diversity of the k13 Gene Associated with Artemisinin Delayed Parasite Clearance in Plasmodium falciparum. Antimicrob Agents Chemother 2019; 63:AAC.02550-18. [PMID: 31085516 DOI: 10.1128/aac.02550-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/28/2019] [Indexed: 01/19/2023] Open
Abstract
Mutations in the Plasmodium falciparum k13 (Pfk13) gene are linked to delayed parasite clearance in response to artemisinin-based combination therapies (ACTs) in Southeast Asia. To explore the evolutionary rate and constraints acting on this gene, k13 orthologs from species sharing a recent common ancestor with P. falciparum and Plasmodium vivax were analyzed. These comparative studies were followed by genetic polymorphism analyses within P. falciparum using 982 complete Pfk13 sequences from public databases and new data obtained by next-generation sequencing from African and Haitian isolates. Although k13 orthologs evolve at heterogeneous rates, the gene was conserved across the genus, with only synonymous substitutions being found at residues where mutations linked to the delayed parasite clearance phenotype have been reported. This suggests that those residues were under constraint from undergoing nonsynonymous changes during evolution of the genus. No fixed nonsynonymous differences were found between Pfk13 and its orthologs in closely related species found in African apes. This indicates that all nonsynonymous substitutions currently found in Pfk13 are younger than the time of divergence between P. falciparum and its closely related species. At the population level, no mutations linked to delayed parasite clearance were found in our samples from Africa and Haiti. However, there is a high number of single Pfk13 mutations segregating in P. falciparum populations, and two predominant alleles are distributed worldwide. This pattern is discussed in terms of how changes in the efficacy of natural selection, affected by population expansion, may have allowed for the emergence of mutations tolerant to ACTs.
Collapse
|
11
|
Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. Proc Natl Acad Sci U S A 2018; 115:12513-12518. [PMID: 30455312 DOI: 10.1073/pnas.1813386115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t 1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t 1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.
Collapse
|
12
|
Breglio KF, Amato R, Eastman R, Lim P, Sa JM, Guha R, Ganesan S, Dorward DW, Klumpp-Thomas C, McKnight C, Fairhurst RM, Roberts D, Thomas C, Simon AK. A single nucleotide polymorphism in the Plasmodium falciparum atg18 gene associates with artemisinin resistance and confers enhanced parasite survival under nutrient deprivation. Malar J 2018; 17:391. [PMID: 30367653 PMCID: PMC6204056 DOI: 10.1186/s12936-018-2532-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
Background Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. Results A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite’s susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite’s susceptibility to 227 other compounds. Conclusions These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation. Electronic supplementary material The online version of this article (10.1186/s12936-018-2532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly F Breglio
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA. .,Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Roberto Amato
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Richard Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juliana M Sa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David W Dorward
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rick M Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Roberts
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Craig Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Kheang ST, Sovannaroth S, Ek S, Chy S, Chhun P, Mao S, Nguon S, Lek DS, Menard D, Kak N. Correction to: Prevalence of K13 mutation and Day-3 positive parasitaemia in artemisinin-resistant malaria endemic area of Cambodia: a cross-sectional study. Malar J 2017; 16:435. [PMID: 29078767 PMCID: PMC5660448 DOI: 10.1186/s12936-017-2073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/04/2022] Open
Affiliation(s)
- Soy Ty Kheang
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia.
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnow Penh, Cambodia
| | - Sovann Ek
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| | - Say Chy
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| | - Phally Chhun
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| | - Sokkieng Mao
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| | - Sokomar Nguon
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| | - Dy Soley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnow Penh, Cambodia
| | - Didier Menard
- Pasteur Institute in Cambodia (IPC), Phnow Penh, Cambodia
| | - Neeraj Kak
- PMI/USAID-Cambodia Malaria Elimination Project (CMEP), University Research Co. LLC, Phnom Penh, Cambodia
| |
Collapse
|