1
|
Calderón-Ruiz P, Velez-Tobón G, Bolívar-Hernández S, Murcia-Montaño LM, Tobón-Castaño A. Chloroquine-primaquine therapeutic response and safety in patients with uncomplicated Plasmodium vivax malaria in the Colombian Amazon region. Malar J 2024; 23:348. [PMID: 39558343 PMCID: PMC11575219 DOI: 10.1186/s12936-024-05170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND In Colombia, published studies on the treatment of uncomplicated Plasmodium vivax malaria with chloroquine-primaquine are scarce. The aim of this study was to evaluate the therapeutic response to two treatment regimens at the 28-day follow-up and the occurrence of adverse events in patients with P. vivax malaria. METHODS A quasi-experimental clinical trial was conducted at 3 sites in the Department of Amazonas. Patients received supervised or unsupervised anti-malarial treatment (chloroquine plus primaquine), and the primary effectiveness endpoint was the clinical and parasitological response. Safety was assessed through adverse event surveillance. RESULTS A total of 103 patients were included: 53 in the 7-day primaquine group (Group I) and 50 in the group receiving primaquine for 14 days (Group II). Among the patients in group I, an adequate treatment response of 100% and 89.5% was found in patients who received supervised and unsupervised treatment, respectively. In Group II, adequate responses of 100% and 95% were reported for patients who received supervised and unsupervised treatment, respectively. No adverse events were detected. CONCLUSIONS The response to combined treatment with chloroquine plus primaquine continues to be adequate for treating P. vivax malaria in the Colombian Amazon region; however, a response to unsupervised treatment in the region is recommended.
Collapse
Affiliation(s)
- Paula Calderón-Ruiz
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia.
| | - Gabriel Velez-Tobón
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia
| | | | - Luz Mila Murcia-Montaño
- Amazon Public Health Study Group, Amazon Public Health Laboratory, Leticia, 910001, Colombia
| | - Alberto Tobón-Castaño
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin, 050010, Colombia
| |
Collapse
|
2
|
Gatton ML. Linked-evidence modelling of qualitative G6PD testing to inform low- and intermediate-dose primaquine treatment for radical cure of Plasmodium vivax. PLoS Negl Trop Dis 2024; 18:e0012486. [PMID: 39236082 PMCID: PMC11407642 DOI: 10.1371/journal.pntd.0012486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Radical cure of Plasmodium vivax infections is key to the control of vivax malaria. However, the standard doses of 8-aminoquinoline drugs used for radical cure can cause severe haemolysis in G6PD-deficient patients. The availability of near-patient G6PD tests could increase use of primaquine (PQ), however direct evidence of the impacts that G6PD testing has on downstream patient outcomes, such as haemolysis and recurrence is lacking. METHODOLOGY/PRINCIPLE FINDINGS A linked-evidence model was created to investigate changes in the number of severe haemolysis events and P. vivax recurrences within 6 months of treatment when qualitative G6PD testing was used to guide PQ treatment (0.25mg/kg/day for 14 days and 0.5mg/kg/day for 7 days), compared to prescribing 14-day PQ with no G6PD testing. In the model patients identified as G6PD-deficient received 8-week PQ (0.75mg/kg/week). The model was used to simulate scenarios with 1%, 5% and 10% prevalence of G6PD-deficiency (G6PDd) in theoretical populations of 10,000 male and female P. vivax patients and initially assumed 100% adherence to the prescribed PQ regiment. Results illustrate that G6PD testing to guide the 14-day PQ regiment reduced severe haemolysis by 21-80% and increased recurrences by 3-6%, compared to applying the 14-day PQ regiment without G6PD testing. Results for the 7-day PQ regiment informed by G6PD testing were mixed, dependent on G6PDd prevalence and sex. When adherence to the PQ regiments was less than perfect the model predicted reductions in the number of recurrences at all prevalence levels, provided adherence to 7-day PQ was 5-10% higher than adherence to the 14-day regiment. CONCLUSIONS/SIGNIFICANCE Introduction of G6PD testing to guide PQ treatment reduces severe haemolysis events for the 14-day regiment, and the 7-day regiment in higher G6PDd prevalence settings, compared to use of 14-day PQ without G6PD testing when all patients adhere to the prescribed PQ treatment. At a population level, there were increases in recurrences, but this could be resolved when the 7-day regiment was used and had superior adherence compared to the 14-day regiment.
Collapse
Affiliation(s)
- Michelle L. Gatton
- Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Viana Dos Santos MB, Braga de Oliveira A, Veras Mourão RH. Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117595. [PMID: 38122914 DOI: 10.1016/j.jep.2023.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil.
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
4
|
Commons RJ, Rajasekhar M, Edler P, Abreha T, Awab GR, Baird JK, Barber BE, Chu CS, Cui L, Daher A, Gonzalez-Ceron L, Grigg MJ, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Lidia K, Llanos-Cuentas A, Longley RJ, Pereira DB, Pasaribu AP, Pukrittayakamee S, Rijal KR, Sutanto I, Taylor WRJ, Thanh PV, Thriemer K, Vieira JLF, Watson JA, Zuluaga-Idarraga LM, White NJ, Guerin PJ, Simpson JA, Price RN. Effect of primaquine dose on the risk of recurrence in patients with uncomplicated Plasmodium vivax: a systematic review and individual patient data meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:172-183. [PMID: 37748496 PMCID: PMC7615564 DOI: 10.1016/s1473-3099(23)00430-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; General and Subspecialty Medicine, Grampians Health-Ballarat, Ballarat, VIC, Australia.
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peta Edler
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, MORU, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - André Daher
- Fiocruz Clinical Research Platform and Vice‑presidency of Research and Biological Collections, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Kartini Lidia
- Department of Pharmacology and Therapy, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Alejandro Llanos-Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rhea J Longley
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Brazil; Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, Brazil
| | - Ayodhia P Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Komal R Rijal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham V Thanh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Viet Nam
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam; WWARN, Oxford, UK
| | - Lina M Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WWARN, Oxford, UK; Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Julie A Simpson
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Mehdipour P, Rajasekhar M, Dini S, Zaloumis S, Abreha T, Adam I, Awab GR, Baird JK, Brasil LW, Chu CS, Cui L, Daher A, do Socorro M Gomes M, Gonzalez-Ceron L, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Leslie T, Ley B, Lidia K, Llanos-Cuentas A, Longley RJ, Monteiro WM, Pereira DB, Rijal KR, Saravu K, Sutanto I, Taylor WRJ, Thanh PV, Thriemer K, Vieira JLF, White NJ, Zuluaga-Idarraga LM, Guerin PJ, Price RN, Simpson JA, Commons RJ. Effect of adherence to primaquine on the risk of Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. Malar J 2023; 22:306. [PMID: 37817240 PMCID: PMC10563365 DOI: 10.1186/s12936-023-04725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Imperfect adherence is a major barrier to effective primaquine radical cure of Plasmodium vivax. This study investigated the effect of reduced adherence on the risk of P. vivax recurrence. METHODS Efficacy studies of patients with uncomplicated P. vivax malaria, including a treatment arm with daily primaquine, published between January 1999 and March 2020 were identified. Individual patient data from eligible studies were pooled using standardized methodology. Adherence to primaquine was inferred from i) the percentage of supervised doses and ii) the total mg/kg dose received compared to the target total mg/kg dose per protocol. The effect of adherence to primaquine on the incidence of P. vivax recurrence between days 7 and 90 was investigated by Cox regression analysis. RESULTS Of 82 eligible studies, 32 were available including 6917 patients from 18 countries. For adherence assessed by percentage of supervised primaquine, 2790 patients (40.3%) had poor adherence (≤ 50%) and 4127 (59.7%) had complete adherence. The risk of recurrence by day 90 was 14.0% [95% confidence interval: 12.1-16.1] in patients with poor adherence compared to 5.8% [5.0-6.7] following full adherence; p = 0.014. After controlling for age, sex, baseline parasitaemia, and total primaquine dose per protocol, the rate of the first recurrence was higher following poor adherence compared to patients with full adherence (adjusted hazard ratio (AHR) = 2.3 [1.8-2.9]). When adherence was quantified by total mg/kg dose received among 3706 patients, 347 (9.4%) had poor adherence, 88 (2.4%) had moderate adherence, and 3271 (88.2%) had complete adherence to treatment. The risks of recurrence by day 90 were 8.2% [4.3-15.2] in patients with poor adherence and 4.9% [4.1-5.8] in patients with full adherence; p < 0.001. CONCLUSION Reduced adherence, including less supervision, increases the risk of vivax recurrence.
Collapse
Affiliation(s)
- Parinaz Mehdipour
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Ghulam Rahim Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Larissa W Brasil
- Diretoria de Ensino E Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Programa de Pós‑Graduação em Medicina Tropical, Universidade Do Estado Do Amazonas, Manaus, AM, Brazil
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - André Daher
- Fiocruz Clinical Research Platform, Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Margarete do Socorro M Gomes
- Superintendência de Vigilância Em Saúde Do Estado Do Amapá - SVS/AP, Macapá, Amapá, Brazil
- Federal University of aMAPA, Universidade Federal Do Amapá - UNIFAP), Macapá, Amapá, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
- Global Health Group, University of California San Francisco, San Francisco, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
- University of Texas Medical Branch, Galveston, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Kartini Lidia
- Department of Pharmacology and Therapy, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Alejandro Llanos-Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rhea J Longley
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | | | - Dhelio B Pereira
- Centro de Pesquisa Em Medicina Tropical de Rondonia (CEPEM), Porto Velho, Brazil
- Fundação Universidade Federal de Rondonia (UNIR), Porto Velho, Brazil
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Madhava Nagar, Manipal, Karnataka, India
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Pham Vinh Thanh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - José Luiz F Vieira
- Federal University of Pará, Universidade Federal Do Pará - UFPA), Belém, Pará, Brazil
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Lina M Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Ric N Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Darwin, NT, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Darwin, NT, Australia
| | - Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Darwin, NT, Australia.
- General and Subspecialty Medicine, Grampians Health - Ballarat, Ballarat, Australia.
| |
Collapse
|
6
|
Laporta GZ, Grillet ME, Rodovalho SR, Massad E, Sallum MAM. Reaching the malaria elimination goal in Brazil: a spatial analysis and time-series study. Infect Dis Poverty 2022; 11:39. [PMID: 35382896 PMCID: PMC8981179 DOI: 10.1186/s40249-022-00945-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since 2015, the Global Technical Strategy (GTS) for Malaria 2016–2030 has been adopted by the World Health Organization (WHO) as a comprehensive framework to accelerate progress for malaria elimination in endemic countries. This strategy sets the target of reducing global malaria incidence and mortality rates by 90% in 2030. Here it is sought to evaluate Brazil’s achievements towards reaching the WHO GTS milestone in 2030. Considering the total number of new malaria cases in 2015, the main research question is: will Brazil reach the malaria elimination goal in 2030? Methods Analytical strategies were undertaken using the SIVEP-malaria official databases of the Brazilian Malaria Control Programme for the Brazilian Amazon region from 2009 to 2020. Spatial and time-series analyses were applied for identifying municipalities that support the highest numbers of malaria cases over the years. Forecast analysis was used for predicting the estimated number of new cases in Brazil in 2025–2050. Results Brazil has significantly reduced the number of new malaria cases in 2020 in comparison with 2015 in the states of Acre (− 56%), Amapá (− 75%), and Amazonas (− 21%); however, they increased in the states of Pará (156%), Rondônia (74%), and Roraima (362%). Forecast of the predicted number of new malaria cases in 2030 is 74,764 (95% CI: 41,116–141,160) in the Brazilian Amazon. Conclusions It is likely that Brazil will reduce the number of new malaria cases in the Brazilian Amazon in 2030 in relation to that in 2015. Herein forecast shows a reduction by 46% (74,754 in 2030 forecast/137,982 in 2015), but this reduction is yet far from the proposed reduction under the WHO GTS 2030 milestone (90%). Stable and unbeatable transmission in the Juruá River Valley, Manaus, and Lábrea still support endemic malaria in the Brazilian Amazon. Today’s cross-border malaria is impacting the state of Roraima unprecedently. If this situation is maintained, the malaria elimination goal (zero cases) may not be reached before 2050. An enhanced political commitment is vital to ensure optimal public health intervention designs in the post-2030 milestones for malaria elimination. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00945-5.
Collapse
Affiliation(s)
- Gabriel Zorello Laporta
- Graduate Research and Innovation Program, Centro Universitario FMABC, Santo André, SP, Brazil.
| | - Maria Eugenia Grillet
- Laboratory of Parasite and Vector Biology, Institute of Zoology and Tropical Ecology, School of Sciences, Central University of Venezuela, Caracas, Venezuela
| | - Sheila Rodrigues Rodovalho
- Technical Unit of Transmissible Diseases and Current Health Assessment, Pan American Health Organization (PAHO/WHO), Brasília, DF, Brazil
| | - Eduardo Massad
- School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Epidemiology Department, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
8
|
Abstract
Cindy S Chu and co-authors review options for diagnosis, safe and radical cure, and relapse prevention of Plasmodium Vivax.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail:
| | - Nicholas J. White
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Milligan R, Daher A, Villanueva G, Bergman H, Graves PM. Primaquine alternative dosing schedules for preventing malaria relapse in people with Plasmodium vivax. Cochrane Database Syst Rev 2020; 8:CD012656. [PMID: 32816320 DOI: 10.1002/14651858.cd012656.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Plasmodium vivax liver stages (hypnozoites) may cause relapses, prolonging morbidity, and impeding malaria control and elimination. The World Health Organization (WHO) recommends three schedules for primaquine: 0.25 mg/kg/day (standard), or 0.5 mg/kg/day (high standard) for 14 days, or 0.75 mg/kg once weekly for eight weeks, all of which can be difficult to complete. Since primaquine can cause haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, clinicians may be reluctant to prescribe primaquine without G6PD testing, and recommendations when G6PD status is unknown must be based on an assessment of the risks and benefits of prescribing primaquine. Alternative safe and efficacious regimens are needed. OBJECTIVES To assess the efficacy and safety of alternative primaquine regimens for radical cure of P vivax malaria compared to the standard or high-standard 14-day courses. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (PubMed); Embase (Ovid); LILACS (BIREME); WHO International Clinical Trials Registry Platform and ClinicalTrials.gov up to 2 September 2019, and checked the reference lists of all identified studies. SELECTION CRITERIA Randomized controlled trials (RCTs) of adults and children with P vivax malaria using either chloroquine or artemisinin-based combination therapy plus primaquine at a total adult dose of at least 210 mg, compared with the WHO-recommended regimens of 0.25 or 0.5 mg/kg/day for 14 days. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and quality, and extracted data. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous data. We grouped efficacy data according to length of follow-up, partner drug, and trial location. We analysed safety data where included. MAIN RESULTS 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days There may be little or no difference in P vivax recurrences at six to seven months when using the same total dose (210 mg adult dose) over seven days compared to 14 days (RR 0.96, 95% CI 0.66 to 1.39; 4 RCTs, 1211 participants; low-certainty evidence). No serious adverse events were reported. We do not know if there is any difference in the number of adverse events resulting in discontinuation of primaquine (RR 1.04, 95% CI 0.15 to 7.38; 5 RCTs, 1427 participants) or in the frequency of anaemia (RR 3.00, 95% CI 0.12 to 72.91, 1 RCT, 240 participants) between the shorter and longer regimens (very low-certainty evidence). Three trials excluded people with G6PD deficiency; two did not provide this information. Pregnant and lactating women were either excluded or no details were provided. High-standard 0.5 mg/kg/day for 14 days versus standard 0.25 mg/kg/day for 14 days There may be little or no difference in P vivax recurrences at six months with 0.5 mg/kg/day primaquine for 14 days compared to 0.25 mg/kg/day for 14 days (RR 0.84 (95% CI 0.49 to 1.43; 2 RCTs, 677 participants, low-certainty evidence). No serious adverse events were reported. We do not know whether there is a difference in adverse events resulting in discontinuation of treatment with the high-standard dosage (RR 4.19, 95% CI 0.90 to 19.60; 1 RCT, 778 participants, very low-certainty evidence). People with G6PD deficiency and pregnant or lactating women were excluded. 0.75 mg/kg/week for eight weeks versus high-standard 0.5 mg/kg/day for 14 days We do not know whether weekly primaquine increases or decreases recurrences of P vivax compared to high-standard 0.5 mg/kg/day for 14 days, at 11 months' follow-up (RR 3.18, 95% CI 0.37 to 27.60; 1 RCT, 122 participants; very low-certainty evidence). No serious adverse events and no episodes of anaemia were reported. G6PD-deficient patients were not randomized but included in the weekly primaquine group (only one patient detected). 1 mg/kg/day for seven days versus high standard 0.5 mg/kg/day for 14 days There is probably little or no difference in P vivax recurrences at 12 months between 1.0 mg/kg/day primaquine for seven days and the high-standard 0.5 mg/kg/day for 14 days (RR 1.03, 95% CI 0.82 to 1.30; 2 RCTs, 2526 participants; moderate-certainty evidence). There may be moderate to large increase in serious adverse events in the 1.0 mg/kg/day primaquine for seven days compared with the high-standard 0.5 mg/kg/day for 14 days, during 42 days follow-up (RR 12.03, 95% CI 1.57 to 92.30; 1 RCT, 1872 participants, low-certainty evidence). We do not know if there is a difference between 1.0 mg/kg/day primaquine for seven days and high-standard 0.5 mg/kg/day for 14 days in adverse events that resulted in discontinuation of treatment (RR 2.50, 95% CI 0.49 to 12.87; 1 RCT, 2526 participants, very low-certainty evidence), nor if there is difference in frequency of anaemia by 42 days (RR 0.93, 95% CI 0.62 to 1.41; 2 RCTs, 2440 participants, very low-certainty evidence). People with G6PD deficiency were excluded. Other regimens Two RCTs evaluated other rarely-used doses of primaquine, one of which had very high loss to follow-up. Adverse events were not reported. People with G6PD deficiency and pregnant or lactating women were excluded. AUTHORS' CONCLUSIONS Trials available to date do not detect a difference in recurrence between the following regimens: 1) 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days; 2) high-standard 0.5 mg/kg/day for 14 days versus standard 0.25 mg/kg/day for 14 days; 3) 0.75 mg/kg/week for eight weeks versus high-standard 0.5 mg/kg/day for 14 days; 4) 1 mg/kg/day for seven days versus high-standard 0.5 mg/kg/day for 14 days. There were no differences detected in adverse events for Comparisons 1, 2 or 3, but there may be more serious adverse events with the high seven-day course in Comparison 4. The shorter regimen of 0.5 mg/kg/day for seven days versus standard 0.25 mg/kg/day for 14 days may suit G6PD-normal patients. Further research will help increase the certainty of the findings and applicability in different settings.
Collapse
Affiliation(s)
- Rachael Milligan
- Cochrane Infectious Diseases Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - André Daher
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
10
|
Melo J, Padilha M, Barbosa R, Alonso W, Vittor A, Laporta G. Evaluation of the malaria elimination policy in Brazil: a systematic review and epidemiological analysis study. Trop Biomed 2020; 37:513-535. [PMID: 33235398 PMCID: PMC7682744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.
Collapse
Affiliation(s)
- J.O. Melo
- Setor de Pos-graduaçao, Pesquisa e Inovação, Centro Universitârio Saûde ABC, Fundação do ABC, Santo André, SP, Brazil
| | - M.A.O. Padilha
- Setor de Pos-graduaçao, Pesquisa e Inovação, Centro Universitârio Saûde ABC, Fundação do ABC, Santo André, SP, Brazil
| | - R.T.A. Barbosa
- Setor de Pos-graduaçao, Pesquisa e Inovação, Centro Universitârio Saûde ABC, Fundação do ABC, Santo André, SP, Brazil
| | | | - A.Y. Vittor
- Department of Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - G.Z. Laporta
- Setor de Pos-graduaçao, Pesquisa e Inovação, Centro Universitârio Saûde ABC, Fundação do ABC, Santo André, SP, Brazil
| |
Collapse
|
11
|
Godman B, McCabe H, D Leong T. Fixed dose drug combinations - are they pharmacoeconomically sound? Findings and implications especially for lower- and middle-income countries. Expert Rev Pharmacoecon Outcomes Res 2020; 20:1-26. [PMID: 32237953 DOI: 10.1080/14737167.2020.1734456] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: There are positive aspects regarding the prescribing of fixed dose combinations (FDCs) versus prescribing the medicines separately. However, these have to be balanced against concerns including increased costs and their irrationality in some cases. Consequently, there is a need to review their value among lower- and middle-income countries (LMICs) which have the greatest prevalence of both infectious and noninfectious diseases and issues of affordability.Areas covered: Review of potential advantages, disadvantages, cost-effectiveness, and availability of FDCs in high priority disease areas in LMICs and possible initiatives to enhance the prescribing of valued FDCs and limit their use where there are concerns with their value.Expert commentary: FDCs are valued across LMICs. Advantages include potentially improved response rates, reduced adverse reactions, increased adherence rates, and reduced costs. Concerns include increased chances of drug:drug interactions, reduced effectiveness, potential for imprecise diagnoses and higher unjustified prices. Overall certain FDCs including those for malaria, tuberculosis, and hypertension are valued and listed in the country's essential medicine lists, with initiatives needed to enhance their prescribing where currently low prescribing rates. Proposed initiatives include robust clinical and economic data to address the current paucity of pharmacoeconomic data. Irrational FDCs persists in some countries which are being addressed.
Collapse
Affiliation(s)
- Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Division of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Holly McCabe
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trudy D Leong
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
12
|
The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med 2019; 16:e1002928. [PMID: 31584960 PMCID: PMC6777759 DOI: 10.1371/journal.pmed.1002928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax. METHODS AND FINDINGS Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups. CONCLUSIONS In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.
Collapse
|
13
|
Daher A, Aljayyoussi G, Pereira D, Lacerda MVG, Alexandre MAA, Nascimento CT, Alves JC, da Fonseca LB, da Silva DMD, Pinto DP, Rodrigues DF, Silvino ACR, de Sousa TN, de Brito CFA, Ter Kuile FO, Lalloo DG. Pharmacokinetics/pharmacodynamics of chloroquine and artemisinin-based combination therapy with primaquine. Malar J 2019; 18:325. [PMID: 31547827 PMCID: PMC6757423 DOI: 10.1186/s12936-019-2950-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Activation of hypnozoites of vivax malaria causes multiple clinical relapses, which contribute to the Plasmodium vivax burden and continuing transmission. Artemisinin-based combination therapy (ACT) is effective against blood-stage P. vivax but requires co-administration with primaquine to achieve radical cure. The therapeutic efficacy of primaquine depends on the generation of a therapeutically active metabolite via cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 metabolism has been associated with primaquine treatment failure. This study investigated the association between impaired CYP2D6 genotypes, drug-exposure to the long-acting ACT component (schizonticidal drugs) and tolerance and efficacy. Methods Adult patients with acute vivax malaria were enrolled in a recently completed trial and treated with artesunate–mefloquine, chloroquine or artemether–lumefantrine. All received concomitant primaquine (0.5 mg/kg/day for 7–9 days). The association between efficacy and safety and drug exposure was explored using area-under-the-curve (AUC) and half-life (t1/2) estimates obtained by non-compartmental analysis of the long half-life drugs. Parasite recurrences by day 63 were categorized as related relapses or re-infections/unrelated hypnozoite activation by genotyping three microsatellite loci and two polymorphic loci of merozoite surface antigen-1. The CYP2D6 genotype was identified with Taqman assays by real-time PCR to 9 polymorphisms (8 SNPs and one deletion). Impaired CYP2D6 activity was inferred using the Activity Score System. Results Most recurrences in the ASMQ (67%), CQ (80%) and AL (85%) groups were considered related relapses. Eight of nine (88.9%) of the patients with impaired CYP2D6 activity relapsed with related parasite compared to 18/25 (72%) with normal activity (RR = 1.23, 0.88; 1.72, p = 0.40). There were no associations between the measured PK parameters and recurrence. Patients with longer chloroquine half-lives had more pruritus (RR = 1.09, 1.03; 1.14, p = 0.001). Higher CQ AUCs were associated with reduced falls in haemoglobin by day 14 (Coef − 0.02, − 0.005; − 0.03, p = 0.01). All regimens were well tolerated. Conclusion Genotyping of P. vivax showed that activation of related (homologous) hypnozoites was the most frequent cause of recurrence. The high proportion of the impaired CYP2D6 activity among patients with recurrent infections suggests that slow primaquine metabolism might influence related relapse rates in Brazil among patients receiving primaquine for radical cure, although confirmatory studies are needed. There was no association between drug exposure of the long-acting ACT component (schizonticidal drugs) and risk of related relapse. ACT was well tolerated. These results provide further re-assurance about the safety and efficacy of ACT when combined with short course primaquine to treat uncomplicated malaria vivax in Brazil. Trial registration RBR-79s56s (http://www.ensaiosclinicos.gov.br/rg/RBR-79s56s/)
Collapse
Affiliation(s)
- André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. .,Vice-presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. .,Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Dhelio Pereira
- Tropical Medicine Research Center of Rondonia (CEPEM), Porto Velho, Rondonia, Brazil.,Federal University of Rondonia (UNIR), Porto Velho, Rondonia, Brazil
| | - Marcus V G Lacerda
- Research Institute Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil.,Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | | | - Júlio Castro Alves
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Laís Bastos da Fonseca
- Laboratory of Pharmacokinetics (SEFAR), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Douglas Pereira Pinto
- Laboratory of Pharmacokinetics (SEFAR), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Monitoring the Efficacy of Chloroquine-Primaquine Therapy for Uncomplicated Plasmodium vivax Malaria in the Main Transmission Hot Spot of Brazil. Antimicrob Agents Chemother 2019; 63:AAC.01965-18. [PMID: 30782991 DOI: 10.1128/aac.01965-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/10/2019] [Indexed: 12/15/2022] Open
Abstract
Emerging Plasmodium vivax resistance to chloroquine (CQ) may undermine malaria elimination efforts in South America. CQ-resistant P. vivax has been found in the major port city of Manaus but not in the main malaria hot spots across the Amazon Basin of Brazil, where CQ is routinely coadministered with primaquine (PQ) for radical cure of vivax malaria. Here we randomly assigned 204 uncomplicated vivax malaria patients from Juruá Valley, northwestern Brazil, to receive either sequential (arm 1) or concomitant (arm 2) CQ-PQ treatment. Because PQ may synergize the blood schizontocidal effect of CQ and mask low-level CQ resistance, we monitored CQ-only efficacy in arm 1 subjects, who had PQ administered only at the end of the 28-day follow-up. We found adequate clinical and parasitological responses in all subjects assigned to arm 2. However, 2.2% of arm 1 patients had microscopy-detected parasite recrudescences at day 28. When PCR-detected parasitemias at day 28 were considered, response rates decreased to 92.1% and 98.8% in arms 1 and 2, respectively. Therapeutic CQ levels were documented in 6 of 8 recurrences, consistent with true CQ resistance in vivo In contrast, ex vivo assays provided no evidence of CQ resistance in 49 local P. vivax isolates analyzed. CQ-PQ coadministration was not found to potentiate the antirelapse efficacy of PQ over 180 days of surveillance; however, we suggest that larger studies are needed to examine whether and how CQ-PQ interactions, e.g., CQ-mediated inhibition of PQ metabolism, modulate radical cure efficacy in different P. vivax-infected populations. (This study has been registered at ClinicalTrials.gov under identifier NCT02691910.).
Collapse
|