1
|
Rahman MR, Majumder TR, Apu MAI, Paul AK, Afrose A, Dash BK. CRISPR-Based Programmable Nucleic Acid-Binding Protein Technology Can Specifically Detect Fatal Tropical Disease-Causing Pathogens. J Trop Med 2022; 2022:5390685. [PMID: 36199433 PMCID: PMC9529443 DOI: 10.1155/2022/5390685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Diagnostic approaches capable of ultrasensitive pathogen detection from low-volume clinical samples, running without any sophisticated instrument and laboratory setup, are easily field-deployable, inexpensive, and rapid, and are considered ideal for monitoring disease progression and surveillance. However, standard pathogen detection methods, including culture and microscopic observation, antibody-based serologic tests, and primarily polymerase chain reaction (PCR)-oriented nucleic acid screening techniques, have shortcomings that limit their widespread use in responding to outbreaks and regular diagnosis, especially in remote resource-limited settings (RLSs). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based programmable technology has emerged to challenge the unmet criteria of conventional methods. It consists of CRISPR-associated proteins (Cas) capable of targeting virtually any specific RNA or DNA genome based on the guide RNA (gRNA) sequence. Furthermore, the discovery of programmable trans-cleavage Cas proteins like Cas12a and Cas13 that can collaterally damage reporter-containing single-stranded DNA or RNA upon formation of target Cas-gRNA complex has strengthened this technology with enhanced sensitivity. Current advances, including automated multiplexing, ultrasensitive single nucleotide polymorphism (SNP)-based screening, inexpensive paper-based lateral flow readouts, and ease of use in remote global settings, have attracted the scientific community to introduce this technology in nucleic acid-based precise detection of bacterial and viral pathogens at the point of care (POC). This review highlights CRISPR-Cas-based molecular technologies in diagnosing several tropical diseases, namely malaria, zika, chikungunya, human immunodeficiency virus and acquired immunodeficiency syndrome (HIV-AIDS), tuberculosis (TB), and rabies.
Collapse
Affiliation(s)
- Md. Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Toma Rani Majumder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Aminul Islam Apu
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Alok K. Paul
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Afrina Afrose
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| | - Biplab Kumar Dash
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
2
|
Roucher C, Brosius I, Mbow M, Faye BT, De Hondt A, Smekens B, Arango D, Burm C, Tsoumanis A, Paredis L, van Herrewege Y, Potters I, Cisse B, Mboup S, Polman K, Bottieau E. Evaluation of Artesunate-mefloquine as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM): protocol of a proof-of-concept, open-label, two-arm, individually-randomised controlled trial. BMJ Open 2021; 11:e047147. [PMID: 34168029 PMCID: PMC8231067 DOI: 10.1136/bmjopen-2020-047147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Alternative drugs and diagnostics are needed for the treatment and control of schistosomiasis. The exclusive use of praziquantel (PZQ) in mass drug administration programmes may result in the emergence of drug resistance. PZQ has little activity against Schistosoma larvae, thus reinfection remains a problem in high-risk communities. Furthermore, the insufficient sensitivity of conventional microscopy hinders therapeutic response assessment. Evaluation of artesunate-mefloquine (AM) as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM) aims to evaluate the safety and efficacy of the antimalarial combination artesunate-mefloquine, re-purposed for the treatment of schistosomiasis, and to assess the performance of highly sensitive novel antigen-based and DNA-based assays as tools for monitoring treatment response. METHODS AND ANALYSIS The SchistoSAM study is an open-label, two-arm, individually randomised controlled non-inferiority trial, with a follow-up of 48 weeks. Primary school-aged children from the Richard Toll district in northern Senegal, an area endemic for Schistosoma mansoni and Schistosoma haematobium, are allocated to the AM intervention arm (3-day courses at 6-week intervals) or the PZQ control arm (single dose of 40 mg/kg). The trial's primary endpoints are the efficacy (cure rate (CR), assessed by microscopy) and safety (frequency and pattern of drug-related adverse events) of one AM course versus PZQ at 4 weeks after treatment. Secondary endpoints include (1) cumulative CR, egg reduction rate and safety after each additional course of AM, and at weeks 24 and 48, (2) prevalence and severity of schistosomiasis-related morbidity and (3) malaria prevalence, incidence and morbidity, both after 24 and 48 weeks. CRs and intensity reduction rates are also assessed by antigen-based and DNA-based diagnostic assays, for which performance for treatment monitoring is evaluated. ETHICS AND DISSEMINATION Ethics approval was obtained both in Belgium and Senegal. Oral assent from the children and signed informed consent from their legal representatives was obtained, prior to enrolment. The results will be disseminated in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER NCT03893097; pre-results.
Collapse
Affiliation(s)
- Clémentine Roucher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Moustapha Mbow
- Department of Immunology, Cheikh Anta Diop University, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | | | - Annelies De Hondt
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Bart Smekens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Diana Arango
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Christophe Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Idzi Potters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Badara Cisse
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
3
|
Cunningham CH, Hennelly CM, Lin JT, Ubalee R, Boyce RM, Mulogo EM, Hathaway N, Thwai KL, Phanzu F, Kalonji A, Mwandagalirwa K, Tshefu A, Juliano JJ, Parr JB. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine 2021; 68:103415. [PMID: 34139428 PMCID: PMC8213918 DOI: 10.1016/j.ebiom.2021.103415] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR-based diagnostics are a new class of highly sensitive and specific assays with multiple applications in infectious disease diagnosis. SHERLOCK, or Specific High-Sensitivity Enzymatic Reporter UnLOCKing, is one such CRISPR-based diagnostic that combines recombinase polymerase pre-amplification, CRISPR-RNA base-pairing, and LwCas13a activity for nucleic acid detection. METHODS We developed SHERLOCK assays capable of detecting all Plasmodium species known to cause human malaria and species-specific detection of P. vivax and P. falciparum, the species responsible for the majority of malaria cases worldwide. We further tested these assays using a diverse panel of clinical samples from the Democratic Republic of the Congo, Uganda, and Thailand and pools of Anopheles mosquitoes from Thailand. In addition, we developed a prototype SHERLOCK assay capable of detecting the dihydropteroate synthetase (dhps) single nucleotide variant A581G associated with P. falciparum sulfadoxine resistance. FINDINGS The suite of Plasmodium assays achieved analytical sensitivities ranging from 2•5-18•8 parasites per reaction when tested against laboratory strain genomic DNA. When compared to real-time PCR, the P. falciparum assay achieved 94% sensitivity and 94% specificity during testing of 123 clinical samples. Compared to amplicon-based deep sequencing, the dhps SHERLOCK assay achieved 73% sensitivity and 100% specificity when applied to a panel of 43 clinical samples, with false-negative calls only at lower parasite densities. INTERPRETATION These novel SHERLOCK assays demonstrate the versatility of CRISPR-based diagnostics and their potential as a new generation of molecular tools for malaria diagnosis and surveillance. FUNDING National Institutes of Health (T32GM007092, R21AI148579, K24AI134990, R01AI121558, UL1TR002489, P30CA016086).
Collapse
Affiliation(s)
- Clark H Cunningham
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Jessica T Lin
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ross M Boyce
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Mbarara University of Science and Technology, Mbarara, Uganda
| | - Edgar M Mulogo
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Nicholas Hathaway
- University of Massachusetts School of Medicine, Worcester, MA, United States
| | - Kyaw L Thwai
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernandine Phanzu
- SANRU ASBL (Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Albert Kalonji
- SANRU ASBL (Global Fund), Kinshasa, Democratic Republic of the Congo
| | | | - Antoinette Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jonathan J Juliano
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan B Parr
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
4
|
Leelawong M, Adams NM, Gabella WE, Wright DW, Haselton FR. Detection of Single-Nucleotide Polymorphism Markers of Antimalarial Drug Resistance Directly from Whole Blood. J Mol Diagn 2019; 21:623-631. [PMID: 31204166 DOI: 10.1016/j.jmoldx.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 02/01/2023] Open
Abstract
Monitoring of antimalarial resistance is important to prevent its further spread, but the available options for assessing resistance are less than ideal for field settings. Although molecular detection is perhaps the most efficient method, it is also the most complex because it requires DNA extraction and PCR instrumentation. To develop a more deployable approach, we designed new probes, which, when used in combination with an inhibitor-tolerant Taq polymerase, enable single-nucleotide polymorphism genotyping directly from whole blood. The probes feature two strategic design elements: locked nucleic acids to enhance specificity and the reporter dyes Cy5 and TEX615, which have less optical overlap with the blood absorbance spectra than other commonly used dyes. Probe performance was validated on a traditional laboratory-based instrument and then further tested on a field-deployable Adaptive PCR instrument to develop a point-of-care platform appropriate for use in malaria settings. The probes discriminated between wild-type Plasmodium falciparum and the chloroquine-resistant CRT PF3D7_0709000:c.227A>C (p.Lys76Thr) mutant in the presence of 2% blood. Additionally, in allelic discrimination plots with the new probes, samples clustered more closely to their respective axes compared with samples using minor groove binder probes with 6-FAM and VIC reporter dyes. Our strategy greatly simplifies single-nucleotide polymorphism detection and provides a more accessible alternative for antimalarial resistance surveillance in the field.
Collapse
Affiliation(s)
- Mindy Leelawong
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William E Gabella
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| | - Frederick R Haselton
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|