1
|
Apinjoh TO, Tangi LN, Oriero EC, Drammeh S, Ntui-Njock VN, Etoketim B, Chi HF, Kwi PN, Njie B, Oboh MA, Achidi EA, Amambua-Ngwa A. Histidine-rich protein (hrp) 2-based RDT false-negatives and Plasmodium falciparum hrp 2 and 3 gene deletions in low, seasonal and intense perennial transmission zones in Cameroon: a cross - sectional study. BMC Infect Dis 2024; 24:1080. [PMID: 39350071 PMCID: PMC11443727 DOI: 10.1186/s12879-024-09935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND False negative rapid diagnostic tests (RDTs) accruing to the non-detection of Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) is threatening the diagnosis and management of malaria. Although regular monitoring is necessary to gauge the level of efficacy of the tool, studies in Cameroon remain limited. This study assessed Plasmodium spp. prevalence and Pfhrp2/3 gene deletions across ecological and transmission zones in Cameroon. METHODS This is a cross-sectional, multi-site, community- and hospital- based study, in 21 health facilities and 14 communities covering all five ecological settings in low seasonal (LS) and intense perennial (IPT) malaria transmission zones between 2019 and 2021. Participants were screened for malaria parasite using Pfhrp2 RDT and light microscopic examination of thick peripheral blood smears. DNA was extracted from dried blood spot using chelex®-100 and P. falciparum confirmed using varATS real-time quantitative Polymerase Chain Reaction (qPCR), P. malariae and P. ovale by real-time qPCR of Plasmepsin gene, and P. vivax using a commercial kit. Isolates with amplified Pfcsp and Pfama-1 genes were assayed for Pfhrp 2/3 gene deletions by conventional PCR. RESULTS A total of 3,373 participants enrolled, 1,786 Plasmodium spp. infected, with 77.4% P. falciparum. Discordant RDT and qPCR results (False negatives) were reported in 191 (15.7%) P. falciparum mono-infected samples from LS (29%, 42) and IPT (13.9%, 149). The Pfhrp2+/Pfhrp3 + genotype was most frequent, similar between LS (5.5%, 8/145) and IPT (6.0%, 65/1,076). Single Pfhrp2 and Pfhrp3 gene deletions occurred in LS (0.7%, 1/145 each) and IPT (3.6%, 39/1,076 vs. 2.9%, 31/1,076), respectively. Whilst a single sample harboured Pfhrp2-/Pfhrp3- genotype in LS, 2.4% (26/1,076) were double deleted at IPT. Pfhrp2+/Pfhrp3- (0.3%, 3/1,076) and Pfhrp2-/Pfhrp3+ (1.2%, 13/1,076) genotypes were only observed in IPT. Pfhrp2, Pfhrp3 deletions and Pfhrp2-/Pfhrp3- genotype accounted for 78.8% (26), 69.7% (23) and 63.6% (21) RDT false negatives, respectively. CONCLUSION Plasmodium falciparum remains the most dominant and widely distributed Plasmodium species across transmission and ecological zones in Cameroon. Although the low prevalence of Pfhrp2/3 gene deletions supports the continued use of HRP2-based RDTs for routine malaria diagnosis, the high proportion of false-negatives due to gene deleted parasites necessitates continued surveillance to inform control and elimination efforts.
Collapse
Affiliation(s)
- Tobias Obejum Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
- Department of Chemical and Biological Engineering, The University of Bamenda, Bambili, Cameroon.
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| | - Livinus Ngu Tangi
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sainabou Drammeh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Blessed Etoketim
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Hanesh Fru Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Pilate Nkineh Kwi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Bekai Njie
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
2
|
Molina-de la Fuente I, Pacheco MA, García L, González V, Riloha M, Oki C, Benito A, Escalante AA, Berzosa P. Evolution of pfhrp2 and pfhrp3 deletions in Equatorial Guinea between the pre- and post-RDT introduction. Malar J 2024; 23:215. [PMID: 39026276 PMCID: PMC11264669 DOI: 10.1186/s12936-024-05036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Pfhrp2 and pfhrp3 deletions are threatening Plasmodium falciparum malaria diagnosis by rapid diagnostic tests (RDT) due to false negatives. This study assesses the changes in the frequencies of pfhrp2 and pfhrp3 deletions (pfhrp2Del and pfhrp3Del, respectively) and the genes in their flaking regions, before and after RDT introduction in Equatorial Guinea. METHODS A total of 566 P. falciparum samples were genotyped to assess the presence of pfhrp2 and pfhrp3 deletions and their flanking genes. The specimens were collected 18 years apart from two provinces of Equatorial Guinea, North Bioko (Insular Region) and Litoral Province (Continental Region). Orthologs of pfhrp2 and pfhrp3 genes from other closely related species were used to compare sequencing data to assess pfhrp2 and pfhrp3 evolution. Additionally, population structure was studied using seven neutral microsatellites. RESULTS This study found that pfhrp2Del and pfhrp3Del were present before the introduction of RDT; however, they increased in frequency after their use, reaching more than 15%. Haplotype networks suggested that pfhrp2Del and pfhrp3Del emerged multiple times. Exon 2 of pfhrp2 and pfhrp3 genes had high variability, but there were no significant changes in amino acid sequences. CONCLUSIONS Baseline sampling before deploying interventions provides a valuable context to interpret changes in genetic markers linked to their efficacy, such as the dynamic of deletions affecting RDT efficacy.
Collapse
Affiliation(s)
- Irene Molina-de la Fuente
- Biomedicine and biotechnology Department, University of Alcalá, Ctra.Madrid-Barcelona Km.33,600, 28871, Alcalá de Henares, Spain.
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain.
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, (SERC - 645), 1925 N. 12 St, Philadelphia, PA, 19122-1801, USA
| | - Luz García
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Vicenta González
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Matilde Riloha
- Ministry of Health and Social Welfare (MINSABS), National Programne for Malaria Control, Malabo, Equatorial Guinea
| | - Consuelo Oki
- Ministry of Health and Social Welfare (MINSABS), National Programne for Malaria Control, Malabo, Equatorial Guinea
| | - Agustín Benito
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, (SERC - 645), 1925 N. 12 St, Philadelphia, PA, 19122-1801, USA
| | - Pedro Berzosa
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| |
Collapse
|
3
|
Duah-Quashie NO, Opoku-Agyeman P, Bruku S, Adams T, Tandoh KZ, Ennuson NA, Matrevi SA, Abuaku B, Quashie NB, Watters C, Wolfe D, Quijada HM, Sanders T. Genetic deletions and high diversity of Plasmodium falciparum histidine-rich proteins 2 and 3 genes in parasite populations in Ghana. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1011938. [PMID: 38455301 PMCID: PMC10911008 DOI: 10.3389/fepid.2022.1011938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 03/09/2024]
Abstract
Rapid diagnostic tests (RDTs) are used to diagnose malaria in Ghana and other malaria endemic countries. Plasmodium falciparum histidine-rich protein 2 (PFHRP2) based RDTs are widely used, however the occurrence of deletions of the pfhrp2 gene in some parasites have resulted in false negative test results. Monoclonal antibodies of PFHRP2 cross reacts with PFHRP3 because they share structural similarities and this complements the detection of the parasites by RDT. These two genes were investigated in Ghanaian P. falciparum parasite population to detect deletions and the polymorphisms in exon 2 of the pfhrp2 and pfhrp3 genes. Parasite isolates (2,540) from children ≤ 12 years with uncomplicated malaria from 2015 to 2020 transmission seasons were used. Both genes were amplified using nested PCR and negative results indicated the presence of the deletion of genes. Amplified genes were sequenced for the detection of the amino acid repeats. Deletions were observed in 30.7% (780/2,540) and 17.2% (438/2,540) of the samples for pfhrp2 and pfhrp3 respectively with increasing trends over the three time periods (χ2 -10.305, p = 0.001). A total of 1,632 amplicons were sequenced for each gene, analysis was done on 1,124 and 1,307 good quality sequences for pfhrp2 and pfhrp3 respectively. Pfhrp2 repeat polymorphisms were dominantly of types 2 (AHHAHHAAD) and 7 (AHHAAD) with large numbers of variants. A novel variant of type 14 (AHHANHATD) was seen for pfhrp2. For the pfhrp3 repeat types, 16 (AHHAAN), 17 (AHHDG) and 18 (AHHDD) were the dominant types observed. Variants of type 16 (AHHAAH) and (AHHASH) were also dominant. Repeat types 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 15, 16, and 19 were observed be shared by both genes. The haplotype diversity of both genes ranged between 0.872 and 1 indicating high diversity of the polymorphisms in the isolates. The implication of the findings of the frequencies of the pfhrp2 and pfhrp3 deletions as well as the variants of the main epitopes of the monoclonal antibodies for the RDT (types 2 and 7) in our isolates is an indication of decreased sensitivity of the RDTs in diagnosing malaria infections in Ghana.
Collapse
Affiliation(s)
- Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Selassie Bruku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Tryphena Adams
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwesi Zandoh Tandoh
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Sena Adzoa Matrevi
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Chaselynn Watters
- US Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana
| | - David Wolfe
- US Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana
| | | | - Terrel Sanders
- US Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana
| |
Collapse
|
4
|
Martiáñez-Vendrell X, Skjefte M, Sikka R, Gupta H. Factors Affecting the Performance of HRP2-Based Malaria Rapid Diagnostic Tests. Trop Med Infect Dis 2022; 7:265. [PMID: 36288006 PMCID: PMC9611031 DOI: 10.3390/tropicalmed7100265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The recent COVID-19 pandemic has profoundly impacted global malaria elimination programs, resulting in a sharp increase in malaria morbidity and mortality. To reduce this impact, unmet needs in malaria diagnostics must be addressed while resuming malaria elimination activities. Rapid diagnostic tests (RDTs), the unsung hero in malaria diagnosis, work to eliminate the prevalence of Plasmodium falciparum malaria through their efficient, cost-effective, and user-friendly qualities in detecting the antigen HRP2 (histidine-rich protein 2), among other proteins. However, the testing mechanism and management of malaria with RDTs presents a variety of limitations. This paper discusses the numerous factors (including parasitic, host, and environmental) that limit the performance of RDTs. Additionally, the paper explores outside factors that can hinder RDT performance. By understanding these factors that affect the performance of HRP2-based RDTs in the field, researchers can work toward creating and implementing more effective and accurate HRP2-based diagnostic tools. Further research is required to understand the extent of these factors, as the rapidly changing interplay between parasite and host directly hinders the effectiveness of the tool.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands or
| | - Malia Skjefte
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, UP, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, UP, India
| |
Collapse
|
5
|
Kho S, Anstey NM, Barber BE, Piera K, William T, Kenangalem E, McCarthy JS, Jang IK, Domingo GJ, Britton S, Grigg MJ. Diagnostic performance of a 5-plex malaria immunoassay in regions co-endemic for Plasmodium falciparum, P. vivax, P. knowlesi, P. malariae and P. ovale. Sci Rep 2022; 12:7286. [PMID: 35508558 PMCID: PMC9068623 DOI: 10.1038/s41598-022-11042-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Commercial point-of-care tests remain insufficient for accurately detecting and differentiating low-level malaria infections in regions co-endemic with multiple non-falciparum species, including zoonotic Plasmodium knowlesi (Pk). A 5-plex chemiluminescent assay simultaneously measures pan-Plasmodium lactate dehydrogenase (pLDH), P. falciparum (Pf)-LDH, P. vivax (Pv)-LDH, Pf-histidine-rich protein-2 (HRP2), and C-reactive protein. We assessed its diagnostic performance on whole blood (WB) samples from 102 healthy controls and 306 PCR-confirmed clinical cases of Pf, Pv, Pk, P. malariae (Pm) and P. ovale (Po) mono-infections from Southeast-Asia. We confirm its excellent HRP2-based detection of Pf. Cross-reactivity of Pf-LDH with all non-falciparum species tested was observed (specificity 57.3%). Pv-LDH performance was suboptimal for Pv (93.9% sensitivity and 73.9% specificity). Poor specificity was driven by strong Pk cross-reactivity, with Pv-LDH detecting 93.9% of Pk infections. The pan-LDH-to-Pf-LDH ratio was capable of discerning Pv from Pk, and robustly differentiated Pf from Pm or Po infection, useful in regions with hrp2/3 deletions. We tested the platform's performance in plasma for the first time, with WB outperforming plasma for all analytes except Pv-LDH for Pk. The platform is a promising tool for WB malaria diagnosis, although further development is warranted to improve its utility in regions co-endemic for multiple non-falciparum species.
Collapse
Affiliation(s)
- Steven Kho
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim Piera
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation, Timika, Indonesia
| | - James S McCarthy
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | | | - Sumudu Britton
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
6
|
Alemayehu GS, Messele A, Blackburn K, Lopez K, Lo E, Janies D, Golassa L. Genetic variation of Plasmodium falciparum histidine-rich protein 2 and 3 in Assosa zone, Ethiopia: its impact on the performance of malaria rapid diagnostic tests. Malar J 2021; 20:394. [PMID: 34627242 PMCID: PMC8502267 DOI: 10.1186/s12936-021-03928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Background Rapid diagnostic tests (RDT) are commonly used for the diagnosis of malaria caused by Plasmodium falciparum. However, false negative results of RDT caused by genetic variation of P. falciparum histidine-rich protein 2 and 3 genes (pfhrp2/3) threaten existing malaria case management and control efforts. The main objective of this study was to investigate the genetic variations of the pfhrp2/3 genes. Methods A cross-sectional study was conducted from malaria symptomatic individuals in 2018 in Assosa zone, Ethiopia. Finger-prick blood samples were collected for RDT and microscopic examination of thick and thin blood films. Dried blood spots (DBS) were used for genomic parasite DNA extraction and molecular detection. Amplification of parasite DNA was made by quantitative PCR. DNA amplicons of pfhrp2/3 were purified and sequenced. Results The PfHRP2 amino acid repeat type isolates were less conserved compared to the PfHRP3 repeat type. Eleven and eight previously characterized PfHRP2 and PfHRP3 amino acid repeat types were identified, respectively. Type 1, 4 and 7 repeats were shared by PfHRP2 and PfHRP3 proteins. Type 2 repeats were found only in PfHRP2, while types 16 and 17 were found only in PfHRP3 with a high frequency in all isolates. 18 novel repeat types were found in PfHRP2 and 13 novel repeat types were found in PfHRP3 in single or multiple copies per isolate. The positivity rate for PfHRP2 RDT was high, 82.9% in PfHRP2 and 84.3% in PfHRP3 sequence isolates at parasitaemia levels > 250 parasites/µl. Using the Baker model, 100% of the isolates in group A (If product of types 2 × type 7 repeats ≥ 100) and 73.7% of the isolates in group B (If product of types 2 × type 7 repeats 50–99) were predicted to be detected by PfHRP2 RDT at parasitaemia level > 250 parasite/μl. Conclusion The findings of this study indicate the presence of different PfHRP2 and PfHRP3 amino acid repeat including novel repeats in P. falciparum from Ethiopia. These results indicate that there is a need to closely monitor the performance of PfHRP2 RDT associated with the genetic variation of the pfhrp2 and pfhrp3 gene in P. falciparum isolates at the country-wide level. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03928-3.
Collapse
Affiliation(s)
| | - Alebachew Messele
- Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Kayla Blackburn
- Departments of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Karen Lopez
- Departments of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.,School of Data Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Daniel Janies
- Departments of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Lemu Golassa
- Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Lo Y, Cheung YW, Wang L, Lee M, Figueroa-Miranda G, Liang S, Mayer D, Tanner JA. An electrochemical aptamer-based biosensor targeting Plasmodium falciparum histidine-rich protein II for malaria diagnosis. Biosens Bioelectron 2021; 192:113472. [PMID: 34271397 DOI: 10.1016/j.bios.2021.113472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Malaria is an infectious disease caused by parasitic protozoans from the genus Plasmodium, with the species P. falciparum causing the highest number of deaths worldwide. Rapid diagnostic tests (RDTs) have become critical in the management of malaria, but current RDTs that detect P. falciparum are primarily antibody-based, which can have drawbacks in cost and robustness. Here, we report the development of an electrochemical aptamer-based (E-AB) biosensing alternative. Through selective evolution of ligands by exponential enrichment, we identify DNA aptamers that bind specifically to P. falciparum histidine-rich protein II (PfHRP2). The aptamer is modified with a methylene blue reporter and attached to a gold sensor surface for square-wave voltammetry interrogation. Through this method we are able to quantify PfHRP2 in human serum with an LOD of 3.73 nM. We further demonstrate the biosensor is stable in serum buffers and reusable for multiple detection rounds. These findings provide a promising alternative to conventional PfHRP2 detection for malaria diagnosis, while also expanding the capabilities of E-AB biosensors.
Collapse
Affiliation(s)
- Young Lo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Megan Lee
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shaolin Liang
- "Mobile Health" Ministry of Education-China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha, China; School of Medicine, Northwest University, Xi'an, China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julian Alexander Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
8
|
Alemayehu GS, Blackburn K, Lopez K, Cambel Dieng C, Lo E, Janies D, Golassa L. Detection of high prevalence of Plasmodium falciparum histidine-rich protein 2/3 gene deletions in Assosa zone, Ethiopia: implication for malaria diagnosis. Malar J 2021; 20:109. [PMID: 33622309 PMCID: PMC8095343 DOI: 10.1186/s12936-021-03629-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) targeting histidine rich protein 2(HRP2) are widely used for diagnosis of Plasmodium falciparum infections. Besides PfHRP2, the PfHRP3 antigen contributes to the detection of P. falciparum infections in PfHRP2 RDTs. However, the performance HRP2-based RDT is affected by pfhrp2/3 gene deletions resulting in false-negative test results. The objective of this study was to determine the presence and prevalence of pfhrp2/3 gene deletions including the respective flanking regions among symptomatic patients in Assosa zone, Northwest Ethiopia. Methods A health-facility based cross-sectional study was conducted in febrile patients seeking a malaria diagnosis in 2018. Blood samples were collected by finger-prick for microscopic examination of blood smears, malaria RDT, and molecular analysis using dried blood spots (DBS) prepared on Whatman filter paper. A total of 218 P. falciparum positive samples confirmed by quantitative PCR were included for molecular assay of pfhrp2/3 target gene. Results Of 218 P. falciparum positive samples, exon 2 deletions were observed in 17.9% of pfhrp2 gene and in 9.2% of pfhrp3 gene. A high proportion of deletions in short segments of pfhrp2 exon1-2 (50%) was also detected while the deletions of the pfhrp3 exon1-2 gene were 4.1%. The deletions were extended to the downstream and upstream of the flanking regions in pfhrp2/3 gene (above 30%). Of eighty-six PfHRP2 RDT negative samples, thirty-six lacked pfhrp2 exon 2. Five PfHRP2 RDT negative samples had double deletions in pfhrp2 exon 2 and pfhrp3 exon2. Of these double deletions, only two of the samples with a parasite density above 2000 parasite/µl were positive by the microscopy. Three samples with intact pfhrp3 exon2 in the pfhrp2 exon2 deleted parasite isolates were found to be positive by PfHRP2 RDT and microscopy with a parasite density above 10,000/µl. Conclusion This study confirms the presence of deletions of pfhrp2/3 gene including the flanking regions. Pfhrp2/3 gene deletions results in false-negative results undoubtedly affect the current malaria control and elimination effort in the country. However, further countrywide investigations are required to determine the magnitude of pfhrp2/3 gene deletions and its consequences on routine malaria diagnosis.
Collapse
Affiliation(s)
| | - Kayla Blackburn
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Karen Lopez
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, Charlotte, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Eugenia Lo
- Department of Biological Sciences, Charlotte, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Lemu Golassa
- Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Galatas B, Mayor A, Gupta H, Balanza N, Jang IK, Nhamussua L, Simone W, Cisteró P, Chidimatembue A, Munguambe H, Saúte F, Aide P, Bassat Q. Field performance of ultrasensitive and conventional malaria rapid diagnostic tests in southern Mozambique. Malar J 2020; 19:451. [PMID: 33287822 PMCID: PMC7720469 DOI: 10.1186/s12936-020-03526-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Background An ultrasensitive malaria rapid diagnostic test (RDT) was recently developed for the improved detection of low-density Plasmodium falciparum infections. This study aimed to compare the diagnostic performance of the PfHRP2-based Abbott Malaria Ag P. falciparum ultrasensitive RDT (uRDT) to that of the conventional SD-Bioline Malaria Ag P. falciparum RDT (cRDT) when performed under field conditions. Methods Finger-prick blood samples were collected from adults and children in two cross-sectional surveys in May of 2017 in southern Mozambique. Using real-time quantitative PCR (RT-qPCR) as the reference method, the age-specific diagnostic performance indicators of the cRDT and uRDT were compared. The presence of histidine-rich protein 2 (HRP2) and Plasmodium lactate dehydrogenase (pLDH) antigens was evaluated in a subset from dried blood spots by a quantitative antigen assay. pfhrp2 and pfhrp3 gene deletions were assessed in samples positive by RT-qPCR and negative by both RDTs. Results Among the 4,396 participants with complete test results, the sensitivity of uRDTs (68.2; 95% CI 60.8 to 74.9) was marginally better than that of cRDTs (61.5; 95% CI 53.9 to 68.6) (p-value = 0.004), while the specificities were similar (uRDT: 99.0 [95% CI 98.6 to 99.2], cRDT: 99.2 [95% CI 98.9 to 99.4], p-value = 0.02). While the performance of both RDTs was lowest in ≥ 15-year-olds, driven by the higher prevalence of low parasite density infections in this group, the sensitivity of uRDTs was significantly higher in this age group (54.9, 95% CI 40.3 to 68.9) compared to the sensitivity of cRDTs (39.2, 95% CI 25.8 to 53.9) (p-value = 0.008). Both RDTs detected P. falciparum infections at similar geometric mean parasite densities (112.9 parasites/μL for uRDTs and 145.5 parasites/μL for cRDTs). The presence of HRP2 antigen was similar among false positive (FP) samples of both tests (80.5% among uRDT-FPs and 84.4% among cRDT-FPs). Only one false negative sample was detected with a partial pfhrp2 deletion. Conclusion This study showed that the uRDTs developed by Abbott do not substantially outperform SD-Bioline Pf malaria RDTs in the community and are still not comparable to molecular methods to detect P. falciparum infections in this study setting.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Himanshu Gupta
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| |
Collapse
|
10
|
Taylor SM, Sumner KM, Freedman B, Mangeni JN, Obala AA, Prudhomme O'Meara W. Direct Estimation of Sensitivity of Plasmodium falciparum Rapid Diagnostic Test for Active Case Detection in a High-Transmission Community Setting. Am J Trop Med Hyg 2020; 101:1416-1423. [PMID: 31674301 DOI: 10.4269/ajtmh.19-0558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Community-based active case detection of malaria parasites with conventional rapid diagnostic tests (cRDTs) is a strategy used most commonly in low-transmission settings. We estimated the sensitivity of this approach in a high-transmission setting in Western Kenya. We tested 3,547 members of 912 households identified in 2013-2014 by index children with (case) and without (control) cRDT-positive malaria. All were tested for Plasmodium falciparum with both a cRDT targeting histidine-rich protein 2 and with an ultrasensitive real-time polymerase chain reaction (PCR). We computed cRDT sensitivity against PCR as the referent, compared prevalence between participant types, and estimated cRDT detectability as a function of PCR-estimated parasite density. Parasite prevalence was 22.9% by cRDTs and 61.5% by PCR. Compared with children aged < 5 years or adults aged > 15 years, geometric mean parasite densities (95% CI) were highest in school-age children aged 5-15 years (8.4 p/uL; 6.6-10.6). The overall sensitivity of cRDT was 36%; among asymptomatic household members, cRDT sensitivity was 25.5% and lowest in adults aged > 15 years (15.8%). When modeled as a function of parasite density, relative to school-age children, the probability of cRDT positivity was reduced in both children aged < 5 years (odds ratio [OR] 0.48; 95% CI: 0.34-0.69) and in adults aged > 15 years (OR: 0.35; 95% CI: 0.27-0.47). An HRP2-detecting cRDT had poor sensitivity for active P. falciparum case detection in asymptomatic community members, and sensitivity was lowest in highly prevalent low-density infections and in adults. Future studies can model the incremental effects of high-sensitivity rapid diagnostic tests and the impacts on transmission.
Collapse
Affiliation(s)
- Steve M Taylor
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina.,Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina.,Duke Global Health Institute, Durham, North Carolina
| | - Kelsey M Sumner
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina.,Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Betsy Freedman
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | | | - Andrew A Obala
- College of Health Sciences, Moi University, Eldoret, Kenya
| | - Wendy Prudhomme O'Meara
- College of Health Sciences, Moi University, Eldoret, Kenya.,Duke Global Health Institute, Durham, North Carolina.,Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
11
|
Yamazoe H. Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:209-214. [PMID: 30948054 DOI: 10.1016/j.msec.2019.02.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Abstract
The development of antibody immobilization techniques is essential for creating antibody-based biomaterials. Although numerous methods for antibody immobilization have been demonstrated, low stability and disordered orientation of the immobilized antibody remain an important problem. In this work, an original antibody immobilization technique using a protein film, which achieved a high stability and orientation control of the immobilized antibody, has been described. In this method, an antibody-immobilized albumin film was prepared by adding the cross-linked albumin solution to the substrate, where antibodies were attached in uniform orientation, followed by subsequent drying, and detaching the formed film from the substrate by heating at 120 °C in a dry state. Antibodies in the film showed high antigen-binding capacity, at a level comparable to the oriented immobilized antibody using protein G. The stability of antibodies in the film was found to be significantly high; their antigen-binding capacity was completely retained even after storage at 40 °C in a dry state for one month. Thus, this approach provides useful information to immobilize the antibody on solid surfaces while controlling its orientation and increasing its stability.
Collapse
Affiliation(s)
- Hironori Yamazoe
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|