1
|
Ahmed MA, Baruah P, Saif A, Han JH, Al-Zharani M, Wazid SW, Alkahtani S, Patgiri SJ, Al-Eissa MS, Quan FS. In Silico Analysis Reveals High Levels of Genetic Diversity of Plasmodium knowlesi Cell Traversal Protein for Ookinetes and Sporozoites ( PkCelTOS) in Clinical Samples. Trop Med Infect Dis 2023; 8:380. [PMID: 37624318 PMCID: PMC10458480 DOI: 10.3390/tropicalmed8080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The cell-traversal protein for ookinetes and sporozoites (CelTOS), expressed on the surface of ookinetes and sporozoitesin Plasmodium species, is a promising malaria vaccine candidate. CelTOS is essential for parasite invasion into mosquito midgut and human hepatocytes, thereby contributing to malaria transmission and disease pathogenesis. This study explores the genetic diversity, polymorphisms, haplotypes, natural selection, phylogenetic analysis, and epitope prediction in the full-length Plasmodium knowlesi CelTOS gene in clinical samples from Sarawak, Malaysian Borneo, and long-term laboratory strains from Peninsular Malaysia and the Philippines. Our analysis revealed a high level of genetic variation in the PkCelTOS gene, with a nucleotide diversity of π ~ 0.021, which was skewed towards the 3' end of the gene. This level of diversity is double that observed in PfCelTOS and 20 times that observed in PvCelTOS from worldwide clinical samples. Tests of natural selection revealed evidence for positive selection within clinical samples. Phylogenetic analysis of the amino acid sequence of PkCelTOS revealed the presence of two distinct groups, although no geographical clustering was observed. Epitope prediction analysis identified two potential epitopes (96AQLKATA102 and 124TIKPPRIKED133) using the IEDB server and one epitope (125IKPPRIKED133) by Bcepred server on the C' terminal region of PkCelTOS protein. Both the servers predicted a common epitope region of nine amino acid length (IKPPRIKED) peptide, which can be studied in the future as a potential candidate for vaccine development. These findings shed light on the genetic diversity, polymorphism, haplotypes, and natural selection within PkCelTOS in clinical samples and provide insights about its future prospects as a potential candidate for P. knowlesi malaria vaccine development.
Collapse
Affiliation(s)
- Md Atique Ahmed
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh 786010, Assam, India (S.J.P.)
| | - Pratisthita Baruah
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh 786010, Assam, India (S.J.P.)
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61321, Saudi Arabia
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSU), Riyadh 11623, Saudi Arabia (M.S.A.-E.)
| | - Syeda Wasfeea Wazid
- Arogyo Society of Health, Welfare and Support (ASHWAS), Guwahati 785640, Assam, India;
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saurav J. Patgiri
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh 786010, Assam, India (S.J.P.)
| | - Mohammed S. Al-Eissa
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSU), Riyadh 11623, Saudi Arabia (M.S.A.-E.)
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Noordin NR, Lau YL, Cheong FW, Fong MY. Inter-Population Genetic Diversity and Clustering of Merozoite Surface Protein-1 (pkmsp-1) of Plasmodium knowlesi Isolates from Malaysia and Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8050285. [PMID: 37235333 DOI: 10.3390/tropicalmed8050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The genetic diversity of pkmsp-1 of Malaysian Plasmodium knowlesi isolates was studied recently. However, the study only included three relatively older strains from Peninsular Malaysia and focused mainly on the conserved blocks of this gene. In this study, the full-length pkmsp-1 sequence of recent P. knowlesi isolates from Peninsular Malaysia was characterized, along with Malaysian Borneo and Thailand pkmsp-1 sequences that were retrieved from GenBank. Genomic DNA of P. knowlesi was extracted from human blood specimens and the pkmsp-1 gene was PCR-amplified, cloned, and sequenced. The sequences were analysed for genetic diversity, departure from neutrality, and geographical clustering. The pkmsp-1 gene was found to be under purifying/negative selection and grouped into three clusters via a neighbour-joining tree and neighbour net inferences. Of the four polymorphic blocks in pkmsp-1, block IV, was most polymorphic, with the highest insertion-deletion (indel) sites. Two allelic families were identified in block IV, thereby highlighting the importance of this block as a promising genotyping marker for the multiplicity of infection study of P. knowlesi malaria. A single locus marker may provide an alternate, simpler method to type P. knowlesi in a population.
Collapse
Affiliation(s)
- Naqib Rafieqin Noordin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Ahmed MA, Zaidi RH, Deshmukh GY, Saif A, Alshahrani MA, Salam SS, Elfaki MMA, Han JH, Patgiri SJ, Quan FS. Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples. Genes (Basel) 2022; 13:1944. [PMID: 36360181 PMCID: PMC9689803 DOI: 10.3390/genes13111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 08/20/2023] Open
Abstract
The simian malaria parasite Plasmodium knowlesi causes a high number of zoonotic infections in Malaysia. The thrombospondin-related apical merozoite protein (TRAMP) is an essential ligand for binding to the erythrocyte cell surface, whereby it facilitates the invasion. This study is the first attempt to determine the genetic diversity, phylogeography, natural selection and population structure from 97 full-length PkTRAMP gene sequences originating from Malaysia. We found low levels of nucleotide diversity (π~0.0065) for the full-length gene despite samples originating from geographically separated regions (i.e., Peninsular Malaysia and Malaysian Borneo). The rate of synonymous substitutions was significantly higher than that of non-synonymous substitutions, indicating a purifying selection for the full-length gene within the clinical samples. The population genetic analysis revealed that the parasite population is undergoing a significant population expansion. The analysis of the amino acid sequence alignment of 97 PkTRAMP sequences identified 15 haplotypes, of which a major shared haplotype was noted Hap 1 (n = 68, Sarawak; n = 34, Sabah; n = 12, Peninsular Malaysia; n = 22). The phylogenetic analysis using DNA sequences identified two clusters that separated due to geographical distance and three mixed clusters with samples from both Peninsular Malaysia and Malaysian Borneo. Population structure analyses indicated two distinct sub-populations (K = 2). Our findings point to the potential for independent parasite evolution, which could make zoonotic malaria control and elimination even more challenging.
Collapse
Affiliation(s)
- Md Atique Ahmed
- ICMR-Regional Medical Research Centre, NER, Dibrugarh, Assam, Bhubaneswar 786010, India
| | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli 620001, India
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Narjan 55461, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Narjan 55461, Saudi Arabia
| | - Syeda Sabiha Salam
- Department of Life Sciences, Dibrugarh University, Assam, Dibrugarh 786004, India
| | | | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre, NER, Dibrugarh, Assam, Bhubaneswar 786010, India
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
4
|
Bin Dajem SM, Ahmed MA, Alghnnam FF, Alghannam SF, Deshmukh GY, Zaidi RH, Bohol MFF, Salam SS, Wazid SW, Shafeai MI, Rudiny FH, Motaen AM, Morsy K, Al-Qahtani AA. Genetic Diversity and Population Genetic Analysis of Plasmodium falciparum Thrombospondin Related Anonymous Protein (TRAP) in Clinical Samples from Saudi Arabia. Genes (Basel) 2022; 13:genes13071149. [PMID: 35885932 PMCID: PMC9319867 DOI: 10.3390/genes13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The thrombospondin related anonymous protein (TRAP) is considered one of the most important pre-erythrocytic vaccine targets. Earlier population genetic studies revealed the TRAP gene to be under strong balancing natural selection. This study is the first attempt to analyze genetic diversity, natural selection, phylogeography and population structure in 199 clinical samples from Saudi Arabia using the full-length PfTRAP gene. We found the rate of nonsynonymous substitutions to be significantly higher than that of synonymous substitutions in the clinical samples, indicating a strong positive or diversifying selection for the full-length gene and the Von Willebrand factor (VWF). The nucleotide diversity was found to be π~0.00789 for the full-length gene; however, higher nucleotide diversity was observed for the VWF compared to the thrombospondin repeat region (TSP). Deduction of the amino acid sequence alignment of the PNP repeat region in the Saudi samples revealed six genotypes characterized by tripeptide repeat motifs (PNP, ANP, ENP and SNP). Haplotype network, population structure and population differentiation analyses indicated four distinct sub-populations in spite of the low geographical distance between the sampling sites. Our results suggest the likeliness of independent parasite evolution, creating opportunities for further adaptation, including host transition, and making malaria control even more challenging.
Collapse
Affiliation(s)
- Saad M. Bin Dajem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.M.B.D.); (K.M.)
| | - Md Atique Ahmed
- ICMR-Regional Medical Research Center, Dibrugarh 786010, Assam, India;
| | - Fatimah F. Alghnnam
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Shouq F. Alghannam
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Gauspasha Yusuf Deshmukh
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli 620001, Tamil Nadu, India; (G.Y.D.); (R.H.Z.)
| | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli 620001, Tamil Nadu, India; (G.Y.D.); (R.H.Z.)
| | - Marie Fe F. Bohol
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
| | - Syeda Sabiha Salam
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Syeda Wasfeea Wazid
- Arogya Society of Health, Welfare and Support (ASHWAS), Dinsugia 785640, Assam, India;
| | - Mohammed I. Shafeai
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Fuad H. Rudiny
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Ali M. Motaen
- Sabya General Hospital, Sabya 85534, Saudi Arabia; (M.I.S.); (F.H.R.); (A.M.M.)
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (S.M.B.D.); (K.M.)
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital Research Centre, Riyadh 11211, Saudi Arabia; (F.F.A.); (S.F.A.); (M.F.F.B.)
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence:
| |
Collapse
|
5
|
Lee WC, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, Shahari S, Lau YL. Plasmodium knowlesi: the game changer for malaria eradication. Malar J 2022; 21:140. [PMID: 35505339 PMCID: PMC9066973 DOI: 10.1186/s12936-022-04131-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite that has gained increasing medical interest over the past two decades. This zoonotic parasitic infection is prevalent in Southeast Asia and causes many cases with fulminant pathology. Despite several biogeographical restrictions that limit its distribution, knowlesi malaria cases have been reported in different parts of the world due to travelling and tourism activities. Here, breakthroughs and key information generated from recent (over the past five years, but not limited to) studies conducted on P. knowlesi were reviewed, and the knowledge gap in various research aspects that need to be filled was discussed. Besides, challenges and strategies required to control and eradicate human malaria with this emerging and potentially fatal zoonosis were described.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amirah Amir
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jia Hui Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review. Malar J 2022; 21:89. [PMID: 35300703 PMCID: PMC8929260 DOI: 10.1186/s12936-022-04110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has emerged across Southeast Asia and is now the main cause of malaria in humans in Malaysia. A critical priority for P. knowlesi surveillance and control is understanding whether transmission is entirely zoonotic or is also occurring through human-mosquito-human transmission. Methods A systematic literature review was performed to evaluate existing evidence which refutes or supports the occurrence of sustained human-mosquito-human transmission of P. knowlesi. Possible evidence categories and study types which would support or refute non-zoonotic transmission were identified and ranked. A literature search was conducted on Medline, EMBASE and Web of Science using a broad search strategy to identify any possible published literature. Results were synthesized using the Synthesis Without Meta-analysis (SWiM) framework, using vote counting to combine the evidence within specific categories. Results Of an initial 7,299 studies screened, 131 studies were included within this review: 87 studies of P. knowlesi prevalence in humans, 14 studies in non-human primates, 13 studies in mosquitoes, and 29 studies with direct evidence refuting or supporting non-zoonotic transmission. Overall, the evidence showed that human-mosquito-human transmission is biologically possible, but there is limited evidence of widespread occurrence in endemic areas. Specific areas of research were identified that require further attention, notably quantitative analyses of potential transmission dynamics, epidemiological and entomological surveys, and ecological studies into the sylvatic cycle of the disease. Conclusion There are key questions about P. knowlesi that remain within the areas of research that require more attention. These questions have significant implications for malaria elimination and eradication programs. This paper considers limited but varied research and provides a methodological framework for assessing the likelihood of different transmission patterns for emerging zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04110-z.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University Medical School, Lancaster, UK. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Ahmed MA, Deshmukh GY, Zaidi RH, Saif A, Alshahrani MA, Wazid SW, Patgiri SJ, Quan FS. Identification, Mapping, and Genetic Diversity of Novel Conserved Cross-Species Epitopes of RhopH2 in Plasmodium knowlesi With Plasmodium vivax. Front Cell Infect Microbiol 2022; 11:810398. [PMID: 35096656 PMCID: PMC8793677 DOI: 10.3389/fcimb.2021.810398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| | | | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli, India
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Narjan, Saudi Arabia
| | | | | | - Saurav Jyoti Patgiri
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| |
Collapse
|
8
|
Ahmed MA, Saif A, Quan FS. Diversity pattern of Plasmodium knowlesi merozoite surface protein 4 (MSP4) in natural population of Malaysia. PLoS One 2019; 14:e0224743. [PMID: 31751362 PMCID: PMC6872184 DOI: 10.1371/journal.pone.0224743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023] Open
Abstract
Human infections due to the monkey malaria parasite Plasmodium knowlesi are increasingly being reported from Malaysia. The parasite causes high parasitaemia, severe and fatal malaria in humans thus there is a need for urgent measures for its control. The MSP4 is a potential vaccine candidate, which is well studied in Plasmodium falciparum and Plasmodium vivax; however, no study has been conducted in the orthologous gene of P. knowlesi. In this study, we investigated the level of polymorphisms, haplotypes, natural selection and population structure of full-length pkmsp4 in 32 clinical samples from Malaysian Borneo along with 4 lab-adapted strains. We found low levels of polymorphism across the gene with exon I showing higher diversity than the exon II. The C- terminal epidermal growth factor (EGF) domains and GPI-anchored region within exon II were mostly conserved with only 2 non-synonymous substitutions. Although 21 amino acid haplotypes were found, the frequency of mutation at the majority of the polymorphic positions was low. We found evidence of negative selection at the exon II of the gene indicating existence of functional constraints. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. High population differentiation values were observed within parasite populations originating from Malaysian Borneo (Kapit, Sarikei and Betong) and laboratory-adapted strains obtained from Peninsular Malaysia and Philippines indicating distinct population structure. This is the first study to genetically characterize the full-length msp4 gene from clinical isolates of P. knowlesi from Malaysia and thus would be very useful for future rational vaccine studies. Further studies with higher number of samples and functional characterization of the protein will be necessary.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Ahmed MA, Quan FS. Plasmodium knowlesi clinical isolates from Malaysia show extensive diversity and strong differential selection pressure at the merozoite surface protein 7D (MSP7D). Malar J 2019; 18:150. [PMID: 31035999 PMCID: PMC6489361 DOI: 10.1186/s12936-019-2782-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high proportion of human cases due to the simian malaria parasite Plasmodium knowlesi in Malaysia is a cause of concern, as they can be severe and even fatal. Merozoite surface protein 7 (MSP7) is a multigene family which forms a non-covalent complex with MSP-1 prior to receptor-ligand recognition in Plasmodium falciparum and thus an important antigen for vaccine development. However, no study has been done in any of the ortholog family members in P. knowlesi from clinical samples. This study investigates the level of polymorphism, haplotypes, and natural selection acting at the pkmsp-7D gene in clinical samples from Malaysia. METHODS Thirty-six full-length pkmsp7D gene sequences (along with the reference H-strain: PKNH_1266000) obtained from clinical isolates of Malaysia, which were orthologous to pvmsp7H (PVX_082680) were downloaded from public databases. Population genetic, evolutionary and phylogenetic analyses were performed to determine the level of genetic diversity, polymorphism, recombination and natural selection. RESULTS Analysis of 36 full-length pkmsp7D sequences identified 147 SNPs (91 non-synonymous and 56 synonymous substitutions). Nucleotide diversity across the full-length gene was higher than its ortholog in Plasmodium vivax (msp7H). Region-wise analysis of the gene indicated that the nucleotide diversity at the central region was very high (π = 0.14) compared to the 5' and 3' regions. Most hyper-variable SNPs were detected at the central domain. Multiple test for natural selection indicated the central region was under strong positive natural selection however, the 5' and 3' regions were under negative/purifying selection. Evidence of intragenic recombination were detected at the central region of the gene. Phylogenetic analysis using full-length msp7D genes indicated there was no geographical clustering of parasite population. CONCLUSIONS High genetic diversity with hyper-variable SNPs and strong evidence of positive natural selection at the central region of MSP7D indicated exposure of the region to host immune pressure. Negative selection at the 5' and the 3' regions of MSP7D might be because of functional constraints at the unexposed regions during the merozoite invasion process of P. knowlesi. No evidence of geographical clustering among the clinical isolates from Malaysia indicated uniform selection pressure in all populations. These findings highlight the further evaluation of the regions and functional characterization of the protein as a potential blood stage vaccine candidate for P. knowlesi.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Ahmed MA, Chu KB, Quan FS. The Plasmodium knowlesi Pk41 surface protein diversity, natural selection, sub population and geographical clustering: a 6-cysteine protein family member. PeerJ 2018; 6:e6141. [PMID: 30581686 PMCID: PMC6296336 DOI: 10.7717/peerj.6141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 12/05/2022] Open
Abstract
Introduction The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia. Method Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software. Results Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima’s D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo. Conclusion This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen’s candidacy as a vaccine target for P. knowlesi.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Ahmed MA, Chu KB, Vythilingam I, Quan FS. Within-population genetic diversity and population structure of Plasmodium knowlesi merozoite surface protein 1 gene from geographically distinct regions of Malaysia and Thailand. Malar J 2018; 17:442. [PMID: 30497496 PMCID: PMC6267868 DOI: 10.1186/s12936-018-2583-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The C-terminal 42 kDa domain of Plasmodium knowlesi merozoite surface protein 1 (PkMSP1) is a potential asexual blood-stage vaccine candidate, however, only a limited number of clinical isolates have been analysed from Malaysia and no inter-country comparative diversity study has been conducted. In the present study, nucleotide diversity, haplotypes and natural selection levels of pkmsp1 in clinical samples from geographically distinct regions of Malaysia and Thailand were investigated. The overall population structure of the parasite from the region was determined. METHODS Eleven full-length pkmsp1 sequences obtained from clinical isolates of Malaysia along with the H-strain were downloaded from the database for domain wise characterization of pkmsp1 gene. Additionally, 76 pkmsp-142 sequences from Thailand and Malaysia were downloaded from the database for intra and inter-population analysis. DnaSP 5.10 and MEGA 5.0 software were used to determine genetic diversity, polymorphism, haplotypes and natural selection. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (FST) of parasites were analysed using Arlequin v3.5. RESULTS Sequence analysis of 11 full-length pkmsp1 sequences along with the H-strain identified 477 (8.4%) polymorphic sites, of which 107 were singleton sites. The overall diversity observed in the full-length genes were high in comparison to its ortholog pvmsp1 and the 4 variable domains showed extensive size variations. The nucleotide diversity was low towards the pkmsp1-42 compared to the conserved domains. The 19 kDa domain was less diverse and completely conserved among isolates from Malaysian Borneo. The nucleotide diversity of isolates from Peninsular Malaysia and Thailand were higher than Malaysian Borneo. Network analysis of pkmsp1-42 haplotypes showed geographical clustering of the isolates from Malaysian Borneo and grouping of isolates from Peninsular Malaysia and Thailand. Population differentiation analysis indicated high FST values between parasite populations originating from Malaysian Borneo, Peninsular Malaysia and Thailand attributing to geographical distance. Moderate genetic differentiation was observed for parasite populations from Thailand and Peninsular Malaysia. Evidence of population expansion and purifying selection were observed in all conserved domains with strongest selection within the pkmsp1-42 domain. CONCLUSIONS This study is the first to report on inter country genetic diversity and population structure of P. knowlesi based on msp1. Strong evidence of negative selection was observed in the 42 kDa domain, indicating functional constrains. Geographical clustering of P. knowlesi and moderate to high genetic differentiation values between populations identified in this study highlights the importance of further evaluation using larger number of clinical samples from Southeast Asian countries.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Indra Vythilingam
- Parasitology Department, University of Malaya, Kuala Lumpur, Malaysia
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|