1
|
Friedman-Klabanoff DJ, Berry AA, Travassos MA, Shriver M, Cox C, Butts J, Lundeen JS, Strauss KA, Joshi S, Shrestha B, Mo AX, Nomicos EYH, Deye GA, Regules JA, Bergmann-Leitner ES, Pasetti MF, Laurens MB. Recombinant Full-length Plasmodium falciparum Circumsporozoite Protein-Based Vaccine Adjuvanted With Glucopyranosyl Lipid A-Liposome Quillaja saponaria 21: Results of Phase 1 Testing With Malaria Challenge. J Infect Dis 2024; 229:1883-1893. [PMID: 38330357 PMCID: PMC11175675 DOI: 10.1093/infdis/jiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION NCT03589794.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mallory Shriver
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Kathleen A Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Annie X Mo
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory A Deye
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason A Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Elke S Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Hutter JN, Robben PM, Lee C, Hamer M, Moon JE, Merino K, Zhu L, Galli H, Quinn X, Brown DR, Duncan E, Bolton J, Zou X, Angov E, Lanar DE, Rao M, Matyas GR, Beck Z, Bergmann-Leitner E, Soisson LA, Waters NC, Ngauy V, Regules J, Dutta S. First-in-human assessment of safety and immunogenicity of low and high doses of Plasmodium falciparum malaria protein 013 (FMP013) administered intramuscularly with ALFQ adjuvant in healthy malaria-naïve adults. Vaccine 2022; 40:5781-5790. [PMID: 36055874 DOI: 10.1016/j.vaccine.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 μg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 μg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 μg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).
Collapse
Affiliation(s)
- Jack N Hutter
- Walter Reed Army Institute of Research, Silver Spring, MD, United States.
| | - Paul M Robben
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christine Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Melinda Hamer
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James E Moon
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kristen Merino
- Walter Reed Army Institute of Research, Silver Spring, MD, United States; Current Affiliation: Division of Immunology, Tulane National Primate Research Center Covington, LA, United States
| | - Lei Zhu
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather Galli
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofei Quinn
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Dallas R Brown
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth Duncan
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jessica Bolton
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaoyan Zou
- Navy Medical Research Center, Silver Spring, United States
| | - Evelina Angov
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David E Lanar
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mangala Rao
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Gary R Matyas
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Zoltan Beck
- Walter Reed Army Institute of Research, Silver Spring, MD, United States; Henry Jackson Foundation for Advancement of Military Medicine, Bethesda, MD. Present Address: Pfizer, Inc., 401 N Middletown Rd, Pearl River, New York 10965, United States
| | | | - Lorraine A Soisson
- United States Agency for International Development Malaria Vaccine Development Program, Washington DC, United States
| | - Norman C Waters
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Viseth Ngauy
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, United States.
| |
Collapse
|
4
|
Vaccine co-display of CSP and Pfs230 on liposomes targeting two Plasmodium falciparum differentiation stages. Commun Biol 2022; 5:773. [PMID: 35915227 PMCID: PMC9341416 DOI: 10.1038/s42003-022-03688-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
A vaccine targeting multiple stages of the Plasmodium falciparum parasite life cycle is desirable. The sporozoite surface Circumsporozoite Protein (CSP) is the target of leading anti-infective P. falciparum pre-erythrocytic vaccines. Pfs230, a sexual-stage P. falciparum surface protein, is currently in trials as the basis for a transmission-blocking vaccine, which inhibits parasite development in the mosquito vector. Here, recombinant full-length CSP and a Pfs230 fragment (Pfs230D1+) are co-displayed on immunogenic liposomes to induce immunity against both infection and transmission. Liposomes contain cobalt-porphyrin phospholipid (CoPoP), monophosphoryl lipid A and QS-21, and rapidly bind His-tagged CSP and Pfs230D1+ upon admixture to form bivalent particles that maintain reactivity with conformational monoclonal antibodies. Use of multicolor fluorophore-labeled antigens reveals liposome binding upon admixture, stability in serum and enhanced uptake in murine macrophages in vitro. Bivalent liposomes induce humoral and cellular responses against both CSP and Pfs230D1+. Vaccine-induced antibodies reduce parasite numbers in mosquito midguts in a standard membrane feeding assay. Mice immunized with liposome-displayed antigens or that passively receive antibodies from immunized rabbits have reduced parasite liver burden following challenge with transgenic sporozoites expressing P. falciparum CSP.
Collapse
|
5
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Langowski MD, Khan FA, Savransky S, Brown DR, Balasubramaniyam A, Harrison WB, Zou X, Beck Z, Matyas GR, Regules JA, Miller R, Soisson LA, Batchelor AH, Dutta S. Restricted valency (NPNA) n repeats and junctional epitope-based circumsporozoite protein vaccines against Plasmodium falciparum. NPJ Vaccines 2022; 7:13. [PMID: 35087099 PMCID: PMC8795123 DOI: 10.1038/s41541-022-00430-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines. Tobacco Mosaic Virus (TMV) was used here to display the junctional epitope (mAb CIS43), Region I (mAb 5D5), NPNAx5, and NPNAx20 epitope of CSP (mAbs 317 and 580). Protection studies in mice revealed that Region I did not elicit protective antibodies, and polyclonal antibodies against the junctional epitope showed equivalent protection to NPNAx5. Combining the junctional and NPNAx5 epitopes reduced immunogenicity and efficacy, and increasing the repeat valency to NPNAx20 did not improve upon NPNAx5. TMV was confirmed as a versatile vaccine platform for displaying small epitopes defined by neutralizing mAbs. We show that polyclonal antibodies against engineered VLPs can recapitulate the binding specificity of the mAbs and immune-focusing by reducing the structural complexity of an epitope may be superior to immune-broadening as a vaccine design approach. Most importantly the junctional and restricted valency NPNA epitopes can be the basis for developing highly effective second-generation malaria vaccine candidates.
Collapse
Affiliation(s)
- Mark D Langowski
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Farhat A Khan
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sofya Savransky
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dallas R Brown
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Arasu Balasubramaniyam
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William B Harrison
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Pfizer, 401N Middletown Rd, Pearl River, NY, 10965, USA
| | - Gary R Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robin Miller
- United States Agency for International Development, Washington, DC, USA
| | | | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
7
|
Mallory KL, Taylor JA, Zou X, Waghela IN, Schneider CG, Sibilo MQ, Punde NM, Perazzo LC, Savransky T, Sedegah M, Dutta S, Janse CJ, Pardi N, Lin PJC, Tam YK, Weissman D, Angov E. Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice. NPJ Vaccines 2021; 6:84. [PMID: 34145286 PMCID: PMC8213722 DOI: 10.1038/s41541-021-00345-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Human malaria affects the vast majority of the world's population with the Plasmodium falciparum species causing the highest rates of morbidity and mortality. With no licensed vaccine and leading candidates achieving suboptimal protection in the field, the need for an effective immunoprophylactic option continues to motivate the malaria research community to explore alternative technologies. Recent advances in the mRNA discipline have elevated the long-neglected platform to the forefront of infectious disease research. As the immunodominant coat protein of the invasive stage of the malaria parasite, circumsporozoite protein (PfCSP) was selected as the antigen of choice to assess the immunogenic and protective potential of an mRNA malaria vaccine. In mammalian cell transfection experiments, PfCSP mRNA was well expressed and cell associated. In the transition to an in vivo murine model, lipid nanoparticle (LNP) encapsulation was applied to protect and deliver the mRNA to the cell translation machinery and supply adjuvant activity. The immunogenic effect of an array of factors was explored, such as formulation, dose, number, and interval of immunizations. PfCSP mRNA-LNP achieved sterile protection against infection with two P. berghei PfCSP transgenic parasite strains, with mRNA dose and vaccination interval having a greater effect on outcome. This investigation serves as the assessment of pre-erythrocytic malaria, PfCSP mRNA vaccine candidate resulting in sterile protection, with numerous factors affecting protective efficacy, making it a compelling candidate for further investigation.
Collapse
Affiliation(s)
- Katherine L Mallory
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Parsons Corporation, Centreville, VA, USA
| | - Justin A Taylor
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Xiaoyan Zou
- Naval Medical Research Center, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ishita N Waghela
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Parsons Corporation, Centreville, VA, USA
| | - Cosette G Schneider
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Michael Q Sibilo
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Parsons Corporation, Centreville, VA, USA
| | - Neeraja M Punde
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Leah C Perazzo
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Tatyana Savransky
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | | | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chris J Janse
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | - Evelina Angov
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
8
|
Singh P, Matyas GR, Anderson A, Beck Z. Biophysical characterization of polydisperse liposomal adjuvant formulations. Biochem Biophys Res Commun 2020; 529:362-365. [PMID: 32703436 DOI: 10.1016/j.bbrc.2020.05.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Army Liposome Formulations (ALF) are potent adjuvants, of which there are two primary forms, lyophilized ALF (ALFlyo) containing monophosphoryl lipid A (MPLA) and ALF containing MPLA and QS21 (ALFQ). ALFlyo and ALFQ adjuvants are essential constituents of candidate vaccines for bacterial, viral, and parasitic diseases. They have been widely used in preclinical immunogenicity studies in small animals and non-human primates and are progressing to phase I/IIa clinical trials. ALFQ was prepared by adding saponin QS21 to small unilamellar liposome vesicles (SUVs) of ALF55 that contain 55 mol% cholesterol, whereas ALFlyo was created by reconstituting lyophilized SUVs of ALF43, consisting of 43 mol% cholesterol, in aqueous buffer solution. These formulations display heterogenous particle size distribution. Since biophysical characteristics of liposomes may impact their adjuvant potential, we characterized the particle size distribution and lamellarity of the individual liposome particles in ALFlyo and ALFQ formulations using cryo-electron microscopy and a newly developed MANTA technology. ALFlyo and ALFQ exhibited similar particle size distributions with liposomes ranging from 50 nm to several μm. However, fundamental differences were observed in the lamellar structures of the liposomes. ALFlyo displayed a greater number of multilamellar and multivesicular liposome particles, as compared to that in ALFQ, which was predominately unilamellar.
Collapse
Affiliation(s)
- Pushpendra Singh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| |
Collapse
|
9
|
Optimization of a Plasmodium falciparum circumsporozoite protein repeat vaccine using the tobacco mosaic virus platform. Proc Natl Acad Sci U S A 2020; 117:3114-3122. [PMID: 31988134 PMCID: PMC7022184 DOI: 10.1073/pnas.1911792117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RTS,S/AS01 is a circumsporozoite protein (CSP)-based malaria vaccine that confers partial protection against malaria in endemic areas. Recent reports have elucidated structures of monoclonal antibodies that bind to the central (NPNA) repeat region of CSP and that inhibit parasite invasion. Antigen configuration and copy number of CSP repeats displayed on a tobacco mosaic virus (TMV) particle platform were studied. A TMV vaccine containing CSP repeats displayed as a loop induced 10× better antibody titer than a nearly full-length CSP in mice. In rhesus model, this translated to a 5× improvement in titer. Rhesus antibodies potently inhibited parasite invasion up to 11 mo after vaccination. An optimized epitope-focused, repeat-only CSP vaccine may be sufficient or better than the existing CSP vaccines. Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.
Collapse
|