1
|
Paul KMM, Simpson SV, Nundu SS, Arima H, Yamamoto T. Genetic diversity of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from school-age children in Kinshasa, DRC. Parasitol Int 2024; 100:102866. [PMID: 38350548 DOI: 10.1016/j.parint.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Malaria infections in school-age children further make it difficult to control the disease's spread. Moreover, the genetic diversity of glutamate-rich protein, potentially a candidate for vaccine development, has not yet been investigated in the Democratic Republic of Congo. Therefore, we aimed to assess the genetic diversity of the immunodominant C-terminal repetitive region (R2) of Plasmodium falciparum glutamate-rich protein gene (pfglurp) among school-age children living in Kinshasa, DRC. We conducted nested PCR targeting R2 of pfglurp and the amplicon were directly sequenced. We summarized the prevalence of mutations of bases and amino acids and indicated the amino acid repeat sequence in the R2 region by the unit code. We then statistically analyzed whether there was a relationship between the number of mutations in the pfglurp gene and attributes. In 221 samples, haplotype 1 was the most common (n = 137, 61.99%), with the same sequence as the 3D7 strain. Regarding the number of base mutations, it was higher in urban areas than rural areas (p = 0.0363). When genetic neutrality was tested using data from 171 samples of the single strain, Tajima's D was -1.857 (p = 0.0059). In addition, FST as the genetic distance between all attributes was very small and no significant difference was observed. This study clarified the genetic mutation status and relevant patient attributes among School-age children in the DRC. We found that urban areas are more likely to harbour pfglurp mutations. Future research needs to clarify the reason and mechanism involved.
Collapse
Affiliation(s)
- Kambale Mathe Mowa Paul
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Shirley V Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Sabin S Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Yang PK, Liang XY, Lin M, Chen JT, Huang HY, Lin LY, Ehapo CS, Eyi UM, Zheng YZ, Xie DD, He JQ, Mo HT, Chen XY, Liu XZ, Wu YE. Population genetic analysis of the Plasmodium falciparum erythrocyte binding antigen-175 (EBA-175) gene in Equatorial Guinea. Malar J 2021; 20:374. [PMID: 34538247 PMCID: PMC8451130 DOI: 10.1186/s12936-021-03904-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms and dimorphism have prevented to development of effective vaccines based on this gene. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko Island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175. METHODS The allelic dimorphism of PfEBA-175 region II of 297 bloods samples from Equatorial Guinea in 2018 and 2019 were investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program. RESULTS Both Bioko Island and Bata district populations, the frequency of the F-fragment was higher than that of the C-fragment of PfEBA-175 gene. The PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and - 0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (FST > 0.15, P < 0.05). A total of 310 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging. CONCLUSIONS This study demonstrated that the dimorphism of F-fragment PfEBA-175 was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar another region isolates. And the levels of recombination events suggested that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.
Collapse
Affiliation(s)
- Pei-Kui Yang
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Xue-Yan Liang
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, People's Republic of China
| | - Min Lin
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Jiang-Tao Chen
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Hui-Ying Huang
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Li-Yun Lin
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Yu-Zhong Zheng
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Quan He
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Huan-Tong Mo
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xin-Yao Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China.
| | - Ying-E Wu
- Department of Medical Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China.
| |
Collapse
|