1
|
Chong ETJ, Goh LPW, Yap HJ, Yong EWC, Lee PC. Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo. Genes (Basel) 2022; 13:1229. [PMID: 35886012 PMCID: PMC9319382 DOI: 10.3390/genes13071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the β-like globin gene of the human hosts to the risk of malaria are unclear. Therefore, this study investigates these associations in the Sabah population, with a high incidence of malaria cases. In brief, DNA was extracted from 188 post-diagnostic blood samples infected with Plasmodium parasites and 170 healthy controls without a history of malaria. Genotyping of the β-like globin C-158T, G79A, C16G, and C-551T SNPs was performed using a polymerase chain reaction-restriction fragment length polymorphism approach. Risk association, linkage disequilibrium (LD), and haplotype analyses of these SNPs were assessed. This study found that the variant allele in the C-158T and C16G SNPs were protective against malaria infections by 0.5-fold, while the variant allele in the G79A SNP had a 6-fold increased risk of malaria infection. No SNP combination was in perfect LD, but several haplotypes (CGCC, CGCT, and CGGC) were identified to link with different correlation levels of malaria risk in the population. In conclusion, the C-158T, G79A, and C16G SNPs in the β-like globin gene are associated with the risk of malaria. The haplotypes (CGCC, CGCT, and CGGC) identified in this study could serve as biomarkers to estimate malaria risk in the population. This study provides essential data for the design of malaria control and management strategies.
Collapse
Affiliation(s)
- Eric Tzyy Jiann Chong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Lucky Poh Wah Goh
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Ho Jin Yap
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Eric Wei Choong Yong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (L.P.W.G.); (H.J.Y.); (E.W.C.Y.)
| |
Collapse
|
2
|
Lee WC, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, Shahari S, Lau YL. Plasmodium knowlesi: the game changer for malaria eradication. Malar J 2022; 21:140. [PMID: 35505339 PMCID: PMC9066973 DOI: 10.1186/s12936-022-04131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite that has gained increasing medical interest over the past two decades. This zoonotic parasitic infection is prevalent in Southeast Asia and causes many cases with fulminant pathology. Despite several biogeographical restrictions that limit its distribution, knowlesi malaria cases have been reported in different parts of the world due to travelling and tourism activities. Here, breakthroughs and key information generated from recent (over the past five years, but not limited to) studies conducted on P. knowlesi were reviewed, and the knowledge gap in various research aspects that need to be filled was discussed. Besides, challenges and strategies required to control and eradicate human malaria with this emerging and potentially fatal zoonosis were described.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amirah Amir
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jia Hui Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Phang WK, Bukhari FDM, Zen LPY, Jaimin JJ, Dony JJF, Lau YL. Genetic polymorphism of circumsporozoite protein (CSP) in Plasmodium malariae isolates from Malaysia. Parasitol Int 2022; 87:102519. [PMID: 34800724 DOI: 10.1016/j.parint.2021.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/16/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022]
Abstract
Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.
Collapse
Affiliation(s)
- Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Lee Phone Youth Zen
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joel Judson Jaimin
- Public Health Laboratory Kota Kinabalu (Ministry of Health Malaysia), 88850 Kota Kinabalu, Sabah, Malaysia
| | | | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review. Malar J 2022; 21:89. [PMID: 35300703 PMCID: PMC8929260 DOI: 10.1186/s12936-022-04110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has emerged across Southeast Asia and is now the main cause of malaria in humans in Malaysia. A critical priority for P. knowlesi surveillance and control is understanding whether transmission is entirely zoonotic or is also occurring through human-mosquito-human transmission. Methods A systematic literature review was performed to evaluate existing evidence which refutes or supports the occurrence of sustained human-mosquito-human transmission of P. knowlesi. Possible evidence categories and study types which would support or refute non-zoonotic transmission were identified and ranked. A literature search was conducted on Medline, EMBASE and Web of Science using a broad search strategy to identify any possible published literature. Results were synthesized using the Synthesis Without Meta-analysis (SWiM) framework, using vote counting to combine the evidence within specific categories. Results Of an initial 7,299 studies screened, 131 studies were included within this review: 87 studies of P. knowlesi prevalence in humans, 14 studies in non-human primates, 13 studies in mosquitoes, and 29 studies with direct evidence refuting or supporting non-zoonotic transmission. Overall, the evidence showed that human-mosquito-human transmission is biologically possible, but there is limited evidence of widespread occurrence in endemic areas. Specific areas of research were identified that require further attention, notably quantitative analyses of potential transmission dynamics, epidemiological and entomological surveys, and ecological studies into the sylvatic cycle of the disease. Conclusion There are key questions about P. knowlesi that remain within the areas of research that require more attention. These questions have significant implications for malaria elimination and eradication programs. This paper considers limited but varied research and provides a methodological framework for assessing the likelihood of different transmission patterns for emerging zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04110-z.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University Medical School, Lancaster, UK. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|