1
|
Girgis ST, Adika E, Nenyewodey FE, Senoo Jnr DK, Ngoi JM, Bandoh K, Lorenz O, van de Steeg G, Harrott AJR, Nsoh S, Judge K, Pearson RD, Almagro-Garcia J, Saiid S, Atampah S, Amoako EK, Morang'a CM, Asoala V, Adjei ES, Burden W, Roberts-Sengier W, Drury E, Pierce ML, Gonçalves S, Awandare GA, Kwiatkowski DP, Amenga-Etego LN, Hamilton WL. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat Microbiol 2023; 8:2365-2377. [PMID: 37996707 PMCID: PMC10686832 DOI: 10.1038/s41564-023-01516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.
Collapse
Affiliation(s)
- Sophia T Girgis
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Edem Adika
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Felix E Nenyewodey
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Dodzi K Senoo Jnr
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kukua Bandoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Oliver Lorenz
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Guus van de Steeg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Sebastian Nsoh
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Kim Judge
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Solomon Atampah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Elrmion S Adjei
- Ledzokuku Krowor Municipal Assembly (LEKMA) Hospital, Accra, Ghana
| | - William Burden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Megan L Pierce
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - William L Hamilton
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
2
|
Quan H, Yu P, Kassegne K, Shen HM, Chen SB, Chen JH. Polymorphism of Drug Resistance Genes dhfr and dhps in Plasmodium falciparum Isolates among Chinese Migrant Workers Who Returned from Ghana in 2013. Trop Med Infect Dis 2023; 8:504. [PMID: 37999623 PMCID: PMC10675347 DOI: 10.3390/tropicalmed8110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
In 2013, an epidemic of falciparum malaria involving over 820 persons unexpectedly broke out in Shanglin County, Guangxi Zhuang Autonomous Region, China, after a large number of migrant workers returned from Ghana, where they worked as gold miners. Herein, we selected 146 isolates randomly collected from these patients to investigate the resistance characteristics of the parasite to sulfadoxine-pyrimethamine (SP) by screening mutations in the dhfr and dhps genes. All 146 isolates were successfully genotyped for dhps, and only 137 samples were successfully genotyped for dhfr. In the dhfr gene, point mutations occurred at three codons: 51 (83.2%, 114/137), 59 (94.9%, 130/137), and 108 (96.4%, 132/137). In the dhps gene, mutations occurred at four codons: 436 (36.3%, 53/146 for S436A, 0.7%, 1/146 for S436Y), 437 (95.2%, 139/146), 540 (3.4%, 5/146), and 613 (2.7%, 4/146). All 146 isolates had mutations in at least one codon, either within dhfr or dhps. Quadruple mutation I51R59N108/G437 (41.1%, 60/146) of partial or low resistance level was the most prevalent haplotype combination. Quintuple I51R59N108/G437E540 accounted for 2.1% (3/146). Sextuple I51R59N108/A436G437S613 was also found and accounted for 1.4% (2/146). A chronological assay incorporating two sets of resistance data from the studies of Duah and Amenga-Etego provided an overview of the resistance trend from 2003 to 2018. During this period, the results we obtained generally coincided with the total development tendency of SP resistance. It can be concluded that Plasmodium falciparum samples collected from Chinese migrant workers from Ghana presented prevalent but relatively partial or low resistance to SP. A chronological assay incorporating two sets of data around 2013 indicates that our results possibly reflect the SP resistance level of Ghana in 2013 and that the possibility of increased resistance exists. Therefore, reasonable drug use and management should be strengthened while also maintaining a continuous screening of resistance to SP. These findings also underscore the need to strengthen the prevention of malaria importation from overseas and focus on preventing its reintroduction and transmission in China.
Collapse
Affiliation(s)
- Hong Quan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peng Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- Dalian Center for Disease Control and Prevention, Dalian 116000, China
| | - Kokouvi Kassegne
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Mo Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shen-Bo Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jun-Hu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China
| |
Collapse
|
3
|
Eboumbou Moukoko CE, Kojom Foko LP, Ayina A, Tornyigah B, Epote AR, Penda IC, Epee Eboumbou P, Ebong SB, Texier G, Nsango SE, Ayong L, Tuikue Ndam N, Same Ekobo A. Effectiveness of Intermittent Preventive Treatment with Sulfadoxine-Pyrimethamine in Pregnancy: Low Coverage and High Prevalence of Plasmodium falciparum dhfr-dhps Quintuple Mutants as Major Challenges in Douala, an Urban Setting in Cameroon. Pathogens 2023; 12:844. [PMID: 37375534 DOI: 10.3390/pathogens12060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Intermittent preventive treatment in pregnancy with sulfadoxine and pyrimethamine (IPTp-SP) is a key component in the malaria control strategy implemented in Africa. The aim of this study was to determine IPTp-SP adherence and coverage, and the impact on maternal infection and birth outcomes in the context of widespread SP resistance in the city of Douala, Cameroon. Clinical and demographic information were documented among 888 pregnant women attending 3 health facilities, from the antenatal care visit to delivery. Positive samples were genotyped for P. falciparum gene (dhfr, dhps, and k13) mutations. The overall IPTp-SP coverage (≥three doses) was 17.5%, and 5.1% received no dose. P. falciparum prevalence was 16%, with a predominance of submicroscopic infections (89.3%). Malaria infection was significantly associated with locality and history of malaria, and it was reduced among women using indoor residual spraying. Optimal doses of IPTp-SP were significantly associated with reduced infection among newborns and women (secundiparous and multiparous), but there was no impact of IPTp-SP on the newborn bodyweight. Pfdhfr-Pfdhps quintuple mutants were over-represented (IRNI-FGKAA, IRNI-AGKAA), and sextuple mutants (IRNI-AGKAS, IRNI-FGEAA, IRNI-AGKGS) were also reported. The Pfk13 gene mutations associated with artemisinin resistance were not detected. This study highlights the role of ANC in achieving optimal SP coverage in pregnant women, the mitigated impact of IPTp-SP on malaria outcomes, and the high prevalence of multiple SP-resistant P. falciparum parasites in the city of Douala that could compromise the efficacy of IPTp-SP.
Collapse
Affiliation(s)
- Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | | | - Angèle Ayina
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Bernard Tornyigah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box 1181, Ghana
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, 75006 Paris, France
| | - Annie Rachel Epote
- Haematology Laboratory, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
| | - Ida Calixte Penda
- Clinical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Patricia Epee Eboumbou
- Clinical Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
- Pediatric Wards, Bonassama Hospital, Douala P.O. Box 9023, Cameroon
| | - Serge Bruno Ebong
- Animal Organisms Biology and Physiology Department, Faculty of Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Gaetan Texier
- UMR 257-Vecteurs, Infections Tropicales et Méditerranéennes-VITROME-IRD/SSA/AP-HM, Aix-Marseille University, 13005 Marseille, France
| | - Sandrine Eveline Nsango
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé P.O. Box 1274, Cameroon
| | - Nicaise Tuikue Ndam
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box 1181, Ghana
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, 75006 Paris, France
| | - Albert Same Ekobo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala P.O. Box 24157, Cameroon
| |
Collapse
|
4
|
Berzosa P, Molina de la Fuente I, Ta-Tang TH, González V, García L, Rodríguez-Galet A, Díaz-Regañón R, Galán R, Cerrada-Gálvez L, Ncogo P, Riloha M, Benito A. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019). Malar J 2021; 20:463. [PMID: 34906159 PMCID: PMC8670137 DOI: 10.1186/s12936-021-04000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Background Malaria is one of the deadliest diseases in the world, particularly in Africa. As such, resistance to anti-malarial drugs is one of the most important problems in terms of global malaria control. This study assesses the evolution of the different resistance markers over time and the possible influence of interventions and treatment changes that have been made in Equatorial Guinea. Methods A total of 1223 biological samples obtained in the period 1999 to 2019 were included in the study. Screening for mutations in the pfdhfr, pfdhps, pfmdr1, and pfcrt genes was carried out by nested PCR and restriction-fragment length polymorphisms (RFLPs), and the study of pfk13 genes was carried out by nested PCR, followed by sequencing to determine the presence of mutations. Results The partially and fully resistant haplotypes (pfdhfr + pfdhps) were found to increase over time. Moreover, in 2019, the fully resistant haplotype was found to be increasing, although its super-resistant counterpart remains much less prevalent. A continued decline in pfmdr1 and pfcrt gene mutations over time was also found. The number of mutations detected in pfk13 has increased since 2008, when artemisinin-based combination therapy (ACT) were first introduced, with more mutations being observed in 2019, with two synonymous and five non-synonymous mutations being detected, although these are not related to resistance to ACT. In addition, the non-synonymous A578S mutation, which is the most frequent on the African continent, was detected in 2013, although not in the following years. Conclusions Withdrawal of the use of chloroquine (CQ) as a treatment in Equatorial Guinea has been shown to be effective over time, as wild-type parasite populations outnumber mutant populations. The upward trend observed in sulfadoxine-pyrimethamine (SP) resistance markers suggest its misuse, either alone or in combination with artesunate (AS) or amodiaquine (AQ), in some areas of the country, as was found in a previous study conducted by this group, which allows selective pressure from SP to continue. Single nucleotide polymorphisms (SNPs) 540E and 581G do not exceed the limit of 50 and 10%, respectively, thus meaning that SP is still effective as an intermittent preventive treatment (IPT) in this country. As for the pfk13 gene, no mutations have been detected in relation to resistance to ACT. However, in 2019 there is a greater accumulation of non-synonymous mutations compared to years prior to 2008. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Pedro Berzosa
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.
| | - Irene Molina de la Fuente
- Department of Biomedicine and Biotechnology, University of Alcalá and National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Thuy-Huong Ta-Tang
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Vicenta González
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Luz García
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Ana Rodríguez-Galet
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.,HIV Molecular Epidemiology Laboratory, Ramón y Cajal-IRyCIS Hospital, Madrid, Spain
| | - Ramón Díaz-Regañón
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Rosario Galán
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Laura Cerrada-Gálvez
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Policarpo Ncogo
- State Foundation, Health, Childhood and Social Welfare FSP, Madrid, Spain
| | - Matilde Riloha
- Ministry of Health and Social Welfare-Malaria National Programme of Equatorial Guinea, Malabo, Equatorial Guinea
| | - Agustin Benito
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Pinto A, Archaga O, Mejía Á, Escober L, Henríquez J, Montoya A, Valdivia HO, Fontecha G. Evidence of a Recent Bottleneck in Plasmodium falciparum Populations on the Honduran-Nicaraguan Border. Pathogens 2021; 10:pathogens10111432. [PMID: 34832588 PMCID: PMC8617645 DOI: 10.3390/pathogens10111432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
The countries of Central America and the island of Hispaniola have set the goal of eliminating malaria in less than a decade. Although efforts to reduce the malaria burden in the region have been successful, there has been an alarming increase in cases in the Nicaraguan Moskitia since 2014. The continuous decrease in cases between 2000 and 2014, followed by a rapid expansion from 2015 to the present, has generated a potential bottleneck effect in the populations of Plasmodium spp. Consequently, this study aimed to evaluate the genetic diversity of P. falciparum and the decrease in allelic richness in this population. The polymorphic regions of the pfmsp-1 and pfmsp-2 genes of patients with falciparum malaria from Honduras and Nicaragua were analyzed using nested PCR and sequencing. Most of the samples were classified into the K1 allelic subfamily of the pfmsp-1 gene and into the 3D7 subfamily of the pfmsp-2 gene. Despite the low genetic diversity found, more than half of the samples presented a polyclonal K1/RO33 haplotype. No sequence polymorphisms were found within each allelic subfamily. This study describes a notable decrease in the genetic diversity of P. falciparum in the Moskitia region after a bottleneck phenomenon. These results will be useful for future epidemiological investigations and the monitoring of malaria transmission in Central America.
Collapse
Affiliation(s)
- Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Osman Archaga
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Ángel Mejía
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Lenin Escober
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa 11101, Honduras; (L.E.); (J.H.)
| | - Jessica Henríquez
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa 11101, Honduras; (L.E.); (J.H.)
| | - Alberto Montoya
- National Center for Diagnosis and Reference, Health Ministry, Managua 11001, Nicaragua;
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima 07006, Peru;
| | - Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|