1
|
Yang L. A causality between fruit consumption and colorectal cancer: a two-sample Mendelian randomization analysis. Front Oncol 2024; 14:1362269. [PMID: 38496761 PMCID: PMC10940414 DOI: 10.3389/fonc.2024.1362269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Colorectal cancer (CRC) significantly threatens human health with increasing incidence and mortality. A debate continues whether fruit consumption is associated with CRC, despite dietary habits having an impact on the disease. The study aims to examine the causal relationship between fruit consumption and CRC based on a two-sample Mendelian randomization method (MR). Methods Summary statistics for fruit consumption and CRC were obtained from the UK Biobank and the FinnGen Consortium, respectively. Analysis methods used in this study included the inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode. Heterogeneity and horizontal pleiotropy were also assessed. Additionally, a leave-one-out analysis was performed to validate the robustness of the results. Results We found that fruit consumption was associated with a reduction in CRC risk by the IVW method (P = 0.021). This protective effect was predominantly observed in males (OR 0.374; 95% CI: 0.157-0.892; P = 0.027), while no protective effect was noted in females. However, causal correlations were not observed upon analyzing 16 individual types of fruits. Moreover, our results were unlikely to be influenced by horizontal pleiotropy and heterogeneity. Leave-one-out analysis confirmed the stability of the results. Conclusion Our findings suggest that a genetic predisposition for fruit consumption may be protective against CRC, underscoring the need for further research to elucidate the underlying mechanisms and dietary patterns involved.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Song B, Wang W, Tang X, Goh RMWJ, Thuya WL, Ho PCL, Chen L, Wang L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers (Basel) 2023; 15:2758. [PMID: 37345095 DOI: 10.3390/cancers15102758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer metastasis is a significant challenge in cancer treatment, and most existing drugs are designed to inhibit tumor growth but are often ineffective in treating metastatic cancer, which is the leading cause of cancer-related deaths. Resveratrol, a polyphenol found in grapes, berries, and peanuts, has shown potential in preclinical studies as an anticancer agent to suppress metastasis. However, despite positive results in preclinical studies, little progress has been made in clinical trials. To develop resveratrol as an effective anticancer agent, it is crucial to understand its cellular processes and signaling pathways in tumor metastasis. This review article evaluates the current state and future development strategies of resveratrol to enhance its potency against cancer metastasis within its therapeutic dose. In addition, we critically evaluate the animal models used in preclinical studies for cancer metastasis and discuss novel techniques to accelerate the translation of resveratrol from bench to bedside. The appropriate selection of animal models is vital in determining whether resveratrol can be further developed as an antimetastatic drug in cancer therapy.
Collapse
Affiliation(s)
- Baohong Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Robby Miguel Wen-Jing Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Paul Chi Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University of Singapore, Singapore 119074, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Gielecińska A, Kciuk M, Mujwar S, Celik I, Kołat D, Kałuzińska-Kołat Ż, Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023; 12:986. [PMID: 37048059 PMCID: PMC10092955 DOI: 10.3390/cells12070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Continuous monitoring of the population's health is the main method of learning about disease prevalence. National and international data draw attention to the persistently high rates of cancer incidence. This necessitates the intensification of efforts aimed at developing new, more effective chemotherapeutic and chemopreventive drugs. Plants represent an invaluable source of natural substances with versatile medicinal properties. Multidirectional activities exhibited by natural substances and their ability to modulate key signaling pathways, mainly related to cancer cell death, make these substances an important research direction. This review summarizes the information regarding plant-derived chemotherapeutic drugs, including their mechanisms of action, with a special focus on selected anti-cancer drugs (paclitaxel, irinotecan) approved in clinical practice. It also presents promising plant-based drug candidates currently being tested in clinical and preclinical trials (betulinic acid, resveratrol, and roburic acid).
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
5
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Weina T, Ying L, Yiwen W, Huan-Huan Q. What we have learnt from Drosophila model organism: the coordination between insulin signaling pathway and tumor cells. Heliyon 2022; 8:e09957. [PMID: 35874083 PMCID: PMC9304707 DOI: 10.1016/j.heliyon.2022.e09957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer development is related to a variety of signaling pathways which mediate various cellular processes including growth, survival, division and competition of cells, as well as cell-cell interaction. The insulin signaling pathway interacts with different pathways and plays a core role in the regulations of all these processes. In this study, we reviewed recent studies on the relationship between the insulin signaling pathway and tumors using the Drosophila melanogaster model. We found that on one hand, the insulin pathway is normally hyperactive in tumor cells, which promotes tumor growth, and on the other hand, tumor cells can suppress the growth of healthy tissues via inhibition of their insulin pathway. Moreover, systematic disruption in glucose homeostasis also facilitates cancer development by different mechanisms. The studies on how the insulin network regulates the behaviors of cancer cells may help to discover new therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Tang Weina
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Li Ying
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qiao Huan-Huan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
7
|
Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients 2022; 14:nu14040821. [PMID: 35215471 PMCID: PMC8879758 DOI: 10.3390/nu14040821] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Although numerous studies have reported the benefits of apple consumption on cardiometabolic health parameters and chronic disease prevention, few have focused on the effects of apple juice specifically. Juice consumption may be a convenient way to take advantage of the health effects of the bioactive components present in apples. The present review aims to summarize the current literature on health benefits of apple juice as reported in clinical trials in humans. Of the 67 studies retained, 20 interventional studies on humans were reviewed. Overall, cloudy apple juice consumption was found to be associated with several markers of cardiovascular health that may ultimately be relevant for cancer and neurodegenerative diseases. Most of the documentation was found regarding oxidative stress, as well as observations with other parameters such as markers of inflammation, lipid profile, and diabetes. This review suggests that, in 20 studies, apple juice consumed in moderation exerts positive effects on markers of cardiovascular disease risk (particularly on oxidative stress).
Collapse
|
8
|
Therapeutic Effects of Polyphenols on the Treatment of Colorectal Cancer by Regulating Wnt β-Catenin Signaling Pathway. JOURNAL OF ONCOLOGY 2021; 2021:3619510. [PMID: 34621313 PMCID: PMC8492275 DOI: 10.1155/2021/3619510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death worldwide in terms of both its rates of incidence and mortality. Due to serious side effects associated with conventional chemotherapeutic treatments, many natural products with fewer adverse side effects have been considered as potential treatment options. In fact, many natural products have widely been used in various phases of clinical trials for CRC, as well as in in vitro and in vivo preclinical studies. Curcumin (CUR) and resveratrol (RES) are classified as natural polyphenolic compounds that have been demonstrated to have anticancer activity against CRC and are associated with minimal side effects. By regulating select target genes involved in several key signaling pathways in CRC, in particular, the Wnt β-catenin signaling cascade, the course of CRC may be positively altered. In the current review, we focused on the therapeutic effects of CUR and RES in CRC as they pertain to modulation of the Wnt β-catenin signaling pathway.
Collapse
|
9
|
Ren B, Kwah MXY, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PCL, Wang L, Ong PS, Goh BC. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515:63-72. [PMID: 34052324 DOI: 10.1016/j.canlet.2021.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been expected to ameliorate cancer and foster breakthroughs in cancer therapy. Despite thousands of preclinical studies on the anticancer activity of resveratrol, little progress has been made in translational research and clinical trials. Most studies have focused on its anticancer effects, cellular mechanisms, and signal transduction pathways in vitro and in vivo. In this review, we aimed to discern the causes that prevent resveratrol from being used in cancer treatment. Among the various limitations, poor pharmacokinetics and low potency seem to be the two main bottlenecks of resveratrol. In addition, resveratrol-induced nephrotoxicity in multiple myeloma patients hinders its further development as an anticancer drug. New insights and strategies have been proposed to accelerate the conversion of resveratrol from bench to bedside. In the interim, the most promising approach is to enhance the bioavailability of resveratrol with new formulations. Alternatively, more potent analogues of resveratrol could be developed to augment its anticancer potency. Given all the gaps mentioned, much work remains to be done. However, if remarkable progress can be made, resveratrol may finally be used for cancer therapy.
Collapse
Affiliation(s)
- Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Marabeth Xin-Yi Kwah
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore.
| |
Collapse
|
10
|
El Sabeh M, Saha SK, Afrin S, Islam MS, Borahay MA. Wnt/β-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Mol Cell Biochem 2021; 476:3513-3536. [PMID: 33999334 DOI: 10.1007/s11010-021-04174-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Uterine leiomyoma is the most common tumor of the female reproductive system and originates from a single transformed myometrial smooth muscle cell. Despite the immense medical, psychosocial, and financial impact, the exact underlying mechanisms of leiomyoma pathobiology are poorly understood. Alterations of signaling pathways are thought to be instrumental in leiomyoma biology. Wnt/β-catenin pathway appears to be involved in several aspects of the genesis of leiomyomas. For example, Wnt5b is overexpressed in leiomyoma, and the Wnt/β-catenin pathway appears to mediate the role of MED12 mutations, the most common mutations in leiomyoma, in tumorigenesis. Moreover, Wnt/β-catenin pathway plays a paracrine role where estrogen/progesterone treatment of mature myometrial or leiomyoma cells leads to increased expression of Wnt11 and Wnt16, which induces proliferation of leiomyoma stem cells and tumor growth. Constitutive activation of β-catenin leads to myometrial hyperplasia and leiomyoma-like lesions in animal models. Wnt/β-catenin signaling is also closely involved in mechanotransduction and extracellular matrix regulation and relevant alterations in leiomyoma, and crosstalk is noted between Wnt/β-catenin signaling and other pathways known to regulate leiomyoma development and growth such as estrogen, progesterone, TGFβ, PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, IGF, Hippo, and Notch signaling. Finally, evidence suggests that inhibition of the canonical Wnt pathway using β-catenin inhibitors inhibits leiomyoma cell proliferation. Understanding the molecular mechanisms of leiomyoma development is essential for effective treatment. The specific Wnt/β-catenin pathway molecules discussed in this review constitute compelling candidates for therapeutic targeting.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Villota H, Röthlisberger S, Pedroza-Díaz J. Modulation of the Canonical Wnt Signaling Pathway by Dietary Polyphenols, an Opportunity for Colorectal Cancer Chemoprevention and Treatment. Nutr Cancer 2021; 74:384-404. [PMID: 33596716 DOI: 10.1080/01635581.2021.1884730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few decades there has been a rise in the worldwide incidence of colorectal cancer which can be traced back to the influence of well-known modifiable risk factors such as lifestyle, diet and obesity. Conversely, the consumption of fruits, vegetables and fiber decreases the risk of CRC, which is why dietary polyphenols have aroused interest in recent years as potentially anti-carcinogenic compounds. One of the driving forces of colorectal carcinogenesis, in both sporadic and hereditary CRC, is the aberrant activation/regulation of the Wnt/β-catenin pathway. This review discusses reports of modulation of the Wnt/β-Catenin signaling pathway by dietary polyphenols (resveratrol, avenanthramides, epigallocatechinin, curcumin, quercetin, silibinin, genistein and mangiferin) specifically focusing on CRC, and proposes a model as to how this modulation occurs. There is potential for implementing these dietary polyphenols into preventative and therapeutic therapies for CRC as evidenced by some clinical trials that have been carried out with promising results.
Collapse
Affiliation(s)
- Hernan Villota
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Sarah Röthlisberger
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Johanna Pedroza-Díaz
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| |
Collapse
|
12
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
13
|
Malcomson FC, Willis ND, McCallum I, Xie L, Shivappa N, Wirth MD, Hébert JR, Kocaadam-Bozkurt B, Özturan-Sirin A, Kelly SB, Bradburn DM, Belshaw NJ, Johnson IT, Mathers JC. Diet-Associated Inflammation Modulates Inflammation and WNT Signaling in the Rectal Mucosa, and the Response to Supplementation with Dietary Fiber. Cancer Prev Res (Phila) 2020; 14:337-346. [PMID: 33115783 DOI: 10.1158/1940-6207.capr-20-0335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
Inflammation drives colorectal cancer development, and colorectal cancer risk is influenced by dietary factors, including dietary fiber. Hyperactive WNT signaling occurs in colorectal cancer and may regulate inflammation. This study investigated (i) relationships between the inflammatory potential of diet, assessed using the Energy-adjusted Dietary Inflammatory Index (E-DII), and markers of WNT signaling, and (ii) whether DII status modulated the response to supplementation with two types of dietary fiber. Seventy-five healthy participants were supplemented with resistant starch and/or polydextrose (PD) or placebo for 50 days. Rectal biopsies were collected before and after intervention and used to assess WNT pathway gene expression and crypt cell proliferation. E-DII scores were calculated from food frequency questionnaire data. High-sensitivity C-reactive protein (hsCRP) and fecal calprotectin concentrations were quantified. hsCRP concentration was significantly greater in participants with higher E-DII scores [least square means (LSM) 4.7 vs. 2.4 mg/L, P = 0.03]. Baseline E-DII score correlated with FOSL1 (β = 0.503, P = 0.003) and WNT11 (β = 0.472, P = 0.006) expression, after adjusting for age, gender, body mass index, endoscopy procedure, and smoking status. WNT11 expression was more than 2-fold greater in individuals with higher E-DII scores (LSM 0.131 vs. 0.059, P = 0.002). Baseline E-DII modulated the effects of PD supplementation on FOSL1 expression (P = 0.04). More proinflammatory diets were associated with altered WNT signaling and appeared to modulate the effects of PD supplementation on expression of FOSL1 This is the first study to investigate relationships between the E-DII and molecular markers of WNT signaling in rectal tissue of healthy individuals.Prevention Relevance: Our finding that more inflammatory dietary components may impact large bowel health through effects on a well-recognized pathway involved in cancer development will strengthen the evidence base for dietary advice to help prevent bowel cancer.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Naomi D Willis
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Iain McCallum
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | - Long Xie
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Michael D Wirth
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina.,College of Nursing, University of South Carolina, Columbia, South Carolina
| | - James R Hébert
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Betul Kocaadam-Bozkurt
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne, Turkey
| | - Aycil Özturan-Sirin
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Adnan Menderes University, Aydin, Turkey
| | - Seamus B Kelly
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | | | - Nigel J Belshaw
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ian T Johnson
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
14
|
Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21061936. [PMID: 32178382 PMCID: PMC7139678 DOI: 10.3390/ijms21061936] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
In recent years, epidemiological studies have shown that food is a very powerful means for maintaining a state of well-being and for health prevention. Many degenerative, autoimmune and neoplastic diseases are related to nutrition and the nutrient-organism interaction could define the balance between health and disease. Nutrients and dietary components influence epigenetic phenomena and modify drugs response; therefore, these food-host interactions can influence the individual predisposition to disease and its potential therapeutic response. Do nutraceuticals have positive or negative effects during chemotherapy? The use of nutraceutical supplements in cancer patients is a controversial debate without a definitive conclusion to date. During cancer treatment, patients take nutraceuticals to alleviate drug toxicity and improve long-term results. Some nutraceuticals may potentiate the effect of cytotoxic chemotherapy by inducing cell growth arrest, cell differentiation, and alteration of the redox state of cells, but in some cases, high levels of them may interfere with the effectiveness of chemotherapy, making cancer cells less reactive to chemotherapy. In this review, we highlighted the emerging opinions and data on the pros and cons on the use of nutraceutical supplements during chemotherapy.
Collapse
|
15
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
16
|
Mineda A, Nishimura M, Kagawa T, Takiguchi E, Kawakita T, Abe A, Irahara M. Resveratrol suppresses proliferation and induces apoptosis of uterine sarcoma cells by inhibiting the Wnt signaling pathway. Exp Ther Med 2019; 17:2242-2246. [PMID: 30867708 PMCID: PMC6396019 DOI: 10.3892/etm.2019.7209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Resveratrol, a natural product and peroxisome proliferator-activated receptor (PPAR) agonist, has been reported to exert anti-cancer effects in several tumor models. A previous study by our group reported that prostaglandin J2, a PPARγ ligand, inhibited cell proliferation in a uterine sarcoma cell line. The aim of the present study was to investigate the role of the Wnt signaling pathway in resveratrol-induced apoptosis and inhibition of cell proliferation in the MES-SA human uterine sarcoma cell line. A WST-1 assay demonstrated that resveratrol inhibited cell proliferation in the MES-SA cell line, and flow cytometry revealed that the number of apoptotic cells increased in a resveratrol dose-dependent manner. The mechanisms underlying these effects of resveratrol were speculated to involve the expression of β-catenin and its target gene, c-myc, which were examined using western blot analysis. The results revealed a dose-dependent downregulation of this β-catenin and c-myc. This effect was blunted by a pharmacological inhibitor of glycogen synthase kinase 3β. Therefore, it is likely that resveratrol inhibited the cell proliferation and increased the number of apoptotic cells, at least partially, via the Wnt signaling pathway. The present results suggest that resveratrol is a potential candidate for the treatment of uterine sarcoma.
Collapse
Affiliation(s)
- Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Eri Takiguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akiko Abe
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
17
|
Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2018; 110:473-481. [PMID: 30530050 DOI: 10.1016/j.biopha.2018.11.082] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling has often been reported in different cancers, particularly colorectal cancer (CRC), and this signaling cascade is central to carcinogenesis. Approximately 80% of CRC cases harbor mutations in the adenomatous polyposis coli gene, and half of the remaining cases feature mutations in the β-catenin gene that affect the Wnt/β-catenin signaling pathway. Unsurprisingly, the Wnt/β-catenin signaling pathway has potential value as a therapeutic target in the treatment of CRC. Several inhibitors of the Wnt/β-catenin signaling pathway have been developed for CRC treatment, but so far no molecular therapeutic targeting this pathway has been incorporated into oncological practice. In this review, we discuss the role of Wnt/β-catenin signaling in CRC and its potential as a target of innovative therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Xu
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Dong Chen
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Relling I, Akcay G, Fangmann D, Knappe C, Schulte DM, Hartmann K, Müller N, Türk K, Dempfle A, Franke A, Schreiber S, Laudes M. Role of wnt5a in Metabolic Inflammation in Humans. J Clin Endocrinol Metab 2018; 103:4253-4264. [PMID: 30137542 DOI: 10.1210/jc.2018-01007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Common nutrition-associated diseases like obesity and type 2 diabetes are linked to chronic low-grade inflammation. The secreted glycopeptide wingless-type mouse mammary tumor virus integration site family member 5a (wnt5a) has been implicated in metabolic inflammation in rodent models, suggesting a potential treatment target. Data on the role of wnt5a in human physiology have yielded conflicting results. OBJECTIVE Serum concentrations of wnt5a were measured in a cross-sectional cohort of 896 people to gain deeper insights into wnt5a physiology. DESIGN Serum concentrations of wnt5a were measured by ELISA and related to several phenotyping and genotyping data. In vitro experiments were performed in THP-1 macrophages to examine potential molecular mechanisms. RESULTS Wnt5a levels were significantly positively correlated to IL-6 and triglyceride levels. In subjects with diabetes, wnt5a levels were elevated and significantly correlated with fasting plasma glucose concentrations. Although wnt5a levels were not influenced by common single-nucleotide polymorphisms in the human wnt5a gene, environmental factors significantly altered wnt5a concentrations, as follows: (1) wnt5a levels were reduced in subjects with high nutritional load of the long-chain eicosatetraenoic acid independent of the total caloric intake and overall composition of the macronutrients, and (2) wnt5a levels were lower in humans with a high gut microbiome α diversity. In vitro experiments revealed that stimulation of the IL-6 receptor or the long-chain fatty acid receptor GPR40 directly affected wnt5a expression in human macrophages. CONCLUSION Our data suggest that wnt5a is important in linking inflammation to metabolism. The nutrition and the microbiome might be interesting targets to prevent and/or treat wnt5a-mediated metabolic inflammation.
Collapse
Affiliation(s)
- Isabelle Relling
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Gül Akcay
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Daniela Fangmann
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Carina Knappe
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | | | | | - Nike Müller
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Kathrin Türk
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University of Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Stefan Schreiber
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
- Institute for Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Department of Medicine 1, University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
19
|
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, Ou R, Zhang G, Li F, Hu M, Liu Z, Lu L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget 2017; 7:31413-28. [PMID: 27119499 PMCID: PMC5058767 DOI: 10.18632/oncotarget.8920] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/02/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial-mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment.
Collapse
Affiliation(s)
- Yunli Tong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuting Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Zheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenqin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Guiyu Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fangyuan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, 77030, USA
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
20
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Owczarek K, Lewandowska U. The Impact of Dietary Polyphenols on COX-2 Expression in Colorectal Cancer. Nutr Cancer 2017; 69:1105-1118. [PMID: 29068698 DOI: 10.1080/01635581.2017.1367940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyphenols are natural compounds with high structural diversity whose common occurrence in plants renders them intrinsic dietary components. They are known to be secondary metabolites characterized by a wide spectrum of biological activities, and a growing body of evidence indicates they have anti-inflammatory potential. It is well known that inflammation plays a key role in many chronic diseases such as circulatory diseases, pulmonary diseases, autoimmune diseases, diabetes, cancer, and neurodegenerative diseases. Polyphenols influence the inflammatory process by controlling and inhibiting pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α, and cyclooxygenase-2 (COX-2) enzyme involved in the metabolism of arachidonic acid. Furthermore, polyphenols exhibit anti-inflammatory activity on many levels via NF-κB inhibition, and MAPK, iNOS, and growth factors regulation. This paper reviews the current state of knowledge concerning the potential of various dietary polyphenols to inhibit the effects of COX-2 in colon cancer, by examining the available evidence regarding the efficacy and safety of these compounds obtained from in vitro and animal studies.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- a Department of Biochemistry , Faculty of Medicine, Medical University of Lodz , Lodz , Poland
| | - Urszula Lewandowska
- a Department of Biochemistry , Faculty of Medicine, Medical University of Lodz , Lodz , Poland
| |
Collapse
|