Castro-Egler C, Garcia-Gonzalez A, Aguilera JA, Cerezo PM, Lopez-Crespo P, González-Herrera A. Measuring absorbed energy in the human auditory system using finite element models: A comparison with experimental results.
Technol Health Care 2024;
32:3-15. [PMID:
38669493 PMCID:
PMC11191478 DOI:
10.3233/thc-248001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND
There are different ways to analyze energy absorbance (EA) in the human auditory system. In previous research, we developed a complete finite element model (FEM) of the human auditory system.
OBJECTIVE
In this current work, the external auditory canal (EAC), middle ear, and inner ear (spiral cochlea, vestibule, and semi-circular canals) were modelled based on human temporal bone histological sections.
METHODS
Multiple acoustic, structure, and fluid-coupled analyses were conducted using the FEM to perform harmonic analyses in the 0.1-10 kHz range. Once the FEM had been validated with published experimental data, its numerical results were used to calculate the EA or energy reflected (ER) by the tympanic membrane. This EA was also measured in clinical audiology tests which were used as a diagnostic parameter.
RESULTS
A mathematical approach was developed to calculate the EA and ER, with numerical and experimental results showing adequate correlation up to 1 kHz. Another published FEM had adapted its boundary conditions to replicate experimental results. Here, we recalculated those numerical results by applying the natural boundary conditions of human hearing and found that the results almost totally agreed with our FEM.
CONCLUSION
This boundary problem is frequent and problematic in experimental hearing test protocols: the more invasive they are, the more the results are affected. One of the main objectives of using FEMs is to explore how the experimental test conditions influence the results. Further work will still be required to uncover the relationship between middle ear structures and EA to clarify how to best use FEMs. Moreover, the FEM boundary conditions must be more representative in future work to ensure their adequate interpretation.
Collapse