1
|
Ma S, Li Y, Yao S, Shang Y, Li R, Ling L, Fu W, Wei P, Zhao B, Zhang X, Deng J. A deformable SIS/HA composite hydrogel coaxial scaffold promotes alveolar bone regeneration after tooth extraction. Bioact Mater 2025; 46:97-117. [PMID: 39760069 PMCID: PMC11697370 DOI: 10.1016/j.bioactmat.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket. The SIS/HA scaffold containing GL13K as the outer layer, mimicking compact bone, while SIS hydrogel loaded with bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exos) was utilized as the inner core of the scaffolds, which are like soft tissue in the skeleton. This coaxial scaffold exhibited a modulus of elasticity of 0.82 MPa, enabling it to adaptively fill extraction sockets and maintain an osteogenic space. Concurrently, the inner layer of this composite scaffold, enriched with BMSCs-Exos, promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and BMSCs into the scaffold interior (≈3-fold to the control), up-regulated the expression of genes related to osteogenesis (BMP2, ALP, RUNX2, and OPN) and angiogenesis (HIF-1α and VEGF). This induced new blood vessels and bone growth within the scaffold, addressing the issue of low bone formation rates at the center of defects. GL13K was released by approximately 40.87 ± 4.37 % within the first three days, exerting a localized antibacterial effect and further promoting vascularization and new bone formation in peripheral regions. This design aims to achieve an all-around and efficient bone restoration effect in the extraction socket using coaxial scaffolds through a dual internal and external mechanism.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yumeng Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Shiyu Yao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yucheng Shang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Rui Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Lijuan Ling
- Chinese People's Liberation Army General Hospital JingZhong MED Huangsi Out-patient department, Beijing, 100120, China
| | - Wei Fu
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Xuesong Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhao JZ, Ge YY, Xue LF, Xu YX, Yue J, Li C, Xiao WL. CA1 Modulates the Osteogenic Differentiation of Dental Follicle Stem Cells by Activating the BMP Signaling Pathway In Vitro. Tissue Eng Regen Med 2024; 21:855-865. [PMID: 38652220 PMCID: PMC11286914 DOI: 10.1007/s13770-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Carbonic anhydrase 1 (CA1) has been found to be involved in osteogenesis and osteoclast in various human diseases, but the molecular mechanisms are not completely understood. In this study, we aim to use siRNA and lentivirus to reduce or increase the expression of CA1 in Dental follicle stem cells (DFSCs), in order to further elucidate the role and mechanism of CA1 in osteogenesis, and provide better osteogenic growth factors and stem cell selection for the application of bone tissue engineering in alveolar bone fracture transplantation. METHODS The study used RNA interference and lentiviral vectors to manipulate the expression of the CA1 gene in DFSCs during in vitro osteogenic induction. The expression of osteogenic marker genes was evaluated and changes in CA1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and Bone morphogenetic proteins (BMP2) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The osteogenic effect was assessed through Alizarin Red staining. RESULTS The mRNA and protein expression levels of CA1, ALP, RUNX2, and BMP2 decreased distinctly in the si-CA1 group than other groups (p < 0.05). In the Lentivirus-CA1 (LV-CA1) group, the mRNA and protein expressions of CA1, ALP, RUNX2, and BMP2 were amplified to varying degrees than other groups (p < 0.05). Apart from CA1, BMP2 (43.01%) and ALP (36.69%) showed significant upregulation (p < 0.05). Alizarin red staining indicated that the LV-CA1 group produced more calcified nodules than other groups, with a higher optical density (p < 0.05), and the osteogenic effect was superior. CONCLUSIONS CA1 can impact osteogenic differentiation via BMP related signaling pathways, positioning itself upstream in osteogenic signaling pathways, and closely linked to osteoblast calcification and ossification processes.
Collapse
Affiliation(s)
- Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ying-Ying Ge
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wen-Lin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
4
|
Sharif H, Ziaei H, Rezaei N. Stem Cell-Based Regenerative Approaches for the Treatment of Cleft Lip and Palate: A Comprehensive Review. Stem Cell Rev Rep 2024; 20:637-655. [PMID: 38270744 DOI: 10.1007/s12015-024-10676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Cleft lip and/or palate (CLP) is a prevalent congenital craniofacial abnormality that can lead to difficulties in eating, speaking, hearing, and psychological distress. The traditional approach for treating CLP involves bone graft surgery, which has limitations, post-surgical complications, and donor site morbidity. However, regenerative medicine has emerged as a promising alternative, employing a combination of stem cells, growth factors, and scaffolds to promote tissue regeneration. This review aims to provide a comprehensive overview of stem cell-based regenerative approaches in the management of CLP. A thorough search was conducted in the Medline/PubMed and Scopus databases, including cohort studies, randomized controlled trials, case series, case controls, case reports, and animal studies. The identified studies were categorized into two main groups: clinical studies involving human subjects and in vivo studies using animal models. While there are only a limited number of studies investigating the combined use of stem cells and scaffolds for CLP treatment, they have shown promising results. Various types of stem cells have been utilized in conjunction with scaffolds. Importantly, regenerative methods have been successfully applied to patients across a broad range of age groups. The collective findings derived from the reviewed studies consistently support the notion that regenerative medicine holds potential advantages over conventional bone grafting and represents a promising therapeutic option for CLP. However, future well-designed clinical trials, encompassing diverse combinations of stem cells and scaffolds, are warranted to establish the clinical efficacy of these interventions with a larger number of patients.
Collapse
Affiliation(s)
- Helia Sharif
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Dental Society, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Heliya Ziaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, US
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
| |
Collapse
|
5
|
Hu Z, Jiang Z, Meng S, Liu R, Yang K. Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1252-1267. [PMID: 36917312 DOI: 10.1007/s12015-023-10521-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
In recent years, research on human umbilical cord mesenchymal stem cells (hUCMSCs) derived from human umbilical cord tissue has accelerated and entered clinical application research. Compared with mesenchymal stem cells (MSCs) from other sources, hUCMSCs can be extracted from different parts of umbilical cord or from the whole umbilical cord. It has the characteristics of less ethical controversy, high differentiation potential, strong proliferation ability, efficient expansion in vitro, avoiding immune rejection and immune privilege, and avoids the limitations of lack of embryonic stem cells, heterogeneity, ethical and moral constraints. hUCMSCs avoid the need for embryonic stem cell sources, heterogeneity, and ethical and moral constraints. Bone defects are very common in clinical practice, but completely effective bone tissue regeneration treatment is challenging. Currently, autologous bone transplantation and allogeneic bone transplantation are main treatment approaches in clinical work, but each has different shortcomings, such as limited sources, invasiveness, immune rejection and insufficient osteogenic ability. Therefore, to solve the bottleneck of bone tissue regeneration and repair, a great amount of research has been carried out to explore the clinical advantages of hUCMSCs as seed cells to promote osteogenesis.However, the regulation of osteogenic differentiation of hUCMSCs is an extremely complex process. Although a large number of studies have demonstrated that the role of hUCMSCs in enhancing local bone regeneration and repair through osteogenic differentiation and transplantation into the body involves multiple signaling pathways, there is no relevant article that summarize the findings. This article discusses the osteogenesis-related regulatory mechanisms of hUCMSCs, summarizes the currently known related mechanisms, and speculates on the possible signals.
Collapse
Affiliation(s)
- Zhengqi Hu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shengzi Meng
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Liu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kun Yang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
6
|
Rando RG, Buchaim DV, Cola PC, Buchaim RL. Effects of Photobiomodulation Using Low-Level Laser Therapy on Alveolar Bone Repair. PHOTONICS 2023; 10:734. [DOI: 10.3390/photonics10070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Alveolar bone repair is a complex and extremely important process, so that functions such as the mastication, occlusion and osseointegration of implants can be properly reestablished. Therefore, in order to optimize this process, many procedures have been used, such as grafting with biomaterials and the application of platelet-rich fibrin (PRF). Another method that has been studied is the use of photobiomodulation (PBM) with the use of low-level laser therapy (LLLT), which, through the absorption of photons by the tissue, triggers photochemical mechanisms in the cells so that they start to act in the search for homeostasis of the affected region. Therefore, the objective of this review was to analyze the use of LLLT as a possible auxiliary tool in the alveolar bone repair process. A search was carried out in scientific databases (PubMed/MEDLINE, Web of Science, Scopus and Cochrane) regarding the following descriptors: “low-level laser therapy AND alveolar bone repair” and “photobiomodulation AND alveolar bone repair”. Eighteen studies were selected for detailed analysis, after excluding duplicates and articles that did not meet predetermined inclusion or non-inclusion criteria. According to the studies, it has been seen that LLLT promotes the acceleration of alveolar repair due to the stimulation of ATP production, activation of transcription and growth factors, attenuation of the inflammatory process and induction of angiogenesis. These factors depend on the laser application protocol, and the Gallium Aluminum Arsenide—GaAlAs laser, with a wavelength of 830 nm, was the most used and, when applications of different energy densities were compared, the highest dosages showed themselves to be more efficient. Thus, it was possible to conclude that PBM with LLLT has beneficial effects on the alveolar bone repair process due to its ability to reduce pain, the inflammatory process, induce vascular sprouting and, consequently, accelerate the formation of a new bone matrix, favoring the maintenance or increase in height and/or thickness of the alveolar bone ridge.
Collapse
Affiliation(s)
- Renata Gonçalves Rando
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Paula Cristina Cola
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Speech Therapy Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
7
|
Kondra K, Stanton E, Jimenez C, Chen K, Hammoudeh JA. Does Early Referral Lead to Early Repair? Quality Improvement in Cleft Care. Ann Plast Surg 2023; 90:S312-S314. [PMID: 37227409 DOI: 10.1097/sap.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cleft lip and palate is the most common congenital defect of the head and neck, occurring in 1 of 700 live births. Diagnosis often occurs in utero by conventional or 3-dimensional ultrasound. Early cleft lip repair (ECLR) (<3 months of life) for unilateral cleft lip (UCL), regardless of cleft width, has been the mainstay of lip reconstruction at Children's Hospital Los Angeles since 2015. Historically, traditional lip repair (TLR) was performed at 3 to 6 months of life ± preoperative nasoalveolar molding (NAM). Previous publications highlight the benefits of ECLR, such as enhanced aesthetic outcomes, decreased revision rate, better weight gain, increased alveolar cleft approximation, cost savings of NAM, and improved parent satisfaction. Occasionally, parents are referred for prenatal consultations to discuss ECLR. This study evaluates timing of cleft diagnosis, preoperative surgical consultation, and referral patterns to validate whether prenatal diagnosis and prenatal consultation lead to ECLR. METHODS Retrospective review evaluated patients who underwent ECLR versus TLR ± NAM from 2009 to 2020. Timing of repair, cleft diagnosis, and surgical consultation, as well as referral patterns, were abstracted. Inclusion criteria dictated: age < 3 months for ECLR or 3 to 6 months for TLR, no major comorbidities, and diagnosis of UCL without palatal involvement. Patients with bilateral cleft lip or craniofacial syndromes were excluded. RESULTS Of 107 patients, 51 (47.7%) underwent ECLR whereas 56 underwent TLR (52.3%). Average age at surgery was 31.8 days of life for the ECLR cohort and 112 days of life for the TLR cohort. Furthermore, 70.1% of patients were diagnosed prenatally, yet only 5.6% of families had prenatal consults for lip repair, 100% of which underwent ECLR. Most patients were referred by pediatricians (72.9%). Significance was identified between incidence of prenatal consults and ECLR (P = 0.008). In addition, prenatal diagnosis was significantly correlated with incidence of ECLR (P = 0.027). CONCLUSIONS Our data demonstrate significance between prenatal diagnosis of UCL and prenatal surgical consultation with incidence of ECLR. Accordingly, we advocate for education to referring providers about ECLR and the potential for prenatal surgical consultation in the hopes that families may enjoy the myriad benefits of ECLR.
Collapse
Affiliation(s)
| | | | | | - Kevin Chen
- From the Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA
| | | |
Collapse
|
8
|
An Overview of Collagen-Based Composite Scaffold for Bone Tissue Engineering. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04318-y. [PMID: 36652090 DOI: 10.1007/s12010-023-04318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Bone regeneration or restoration is a series of well-ordered physiological activities that occur throughout a person's life, they are continuously being repaired and remodeled. A conventional bone repair procedure, such as autograft and allograft bone transplant, has failed to address bone reconstruction disputes and complexity. On the other hand, Tissue Engineering is a potential therapy option for repairing rather than replacing the damaged tissue. Biomaterials in bone tissue engineering (BTE) help pave the way for damaged tissues as an artificial extracellular matrix, facilitating new tissue growth. Collagen-based biomaterials for repair and replacement have inspired much interest in the hunt for versatile biomaterials compatible with human tissue. It is a major organic component of extracellular matrix in bone and has been employed as scaffolding material in BTE for decades. In this review, we documented the role of collagen in BTE, focusing on collagen type I, its crosslinking capability, collagen-based biomaterials, and fabrication methods. It also considers osteoblast citration a critical process in bone formation, a unique perspective for an old relationship.
Collapse
|
9
|
Wu Y, Lu Y, Zhao M, Bosiakov S, Li L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102117. [PMID: 35631999 PMCID: PMC9143308 DOI: 10.3390/polym14102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
- DUT-BSU Joint Institute, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Ming Zhao
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarusian State University, No. 4 Nezavisimosti Avenue, 220030 Minsk, Belarus;
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, China
- Correspondence:
| |
Collapse
|
10
|
Amiri MA, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48:71-78. [PMID: 35491137 PMCID: PMC9065639 DOI: 10.5125/jkaoms.2022.48.2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Danesteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Shaikh MS, Shahzad Z, Tash EA, Janjua OS, Khan MI, Zafar MS. Human Umbilical Cord Mesenchymal Stem Cells: Current Literature and Role in Periodontal Regeneration. Cells 2022; 11:cells11071168. [PMID: 35406732 PMCID: PMC8997495 DOI: 10.3390/cells11071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Periodontal disease can cause irreversible damage to tooth-supporting tissues such as the root cementum, periodontal ligament, and alveolar bone, eventually leading to tooth loss. While standard periodontal treatments are usually helpful in reducing disease progression, they cannot repair or replace lost periodontal tissue. Periodontal regeneration has been demonstrated to be beneficial in treating intraosseous and furcation defects to varied degrees. Cell-based treatment for periodontal regeneration will become more efficient and predictable as tissue engineering and progenitor cell biology advance, surpassing the limitations of present therapeutic techniques. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into several cell types when stimulated. Mesenchymal stem cells (MSCs) have been tested for periodontal regeneration in vitro and in humans, with promising results. Human umbilical cord mesenchymal stem cells (UC-MSCs) possess a great regenerative and therapeutic potential. Their added benefits comprise ease of collection, endless source of stem cells, less immunorejection, and affordability. Further, their collection does not include the concerns associated with human embryonic stem cells. The purpose of this review is to address the most recent findings about periodontal regenerative mechanisms, different stem cells accessible for periodontal regeneration, and UC-MSCs and their involvement in periodontal regeneration.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Zara Shahzad
- Lahore Medical and Dental College, University of Health Sciences, Lahore 53400, Pakistan;
| | - Esraa Abdulgader Tash
- Department of Oral and Clinical Basic Science, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia;
| | - Omer Sefvan Janjua
- Department of Maxillofacial Surgery, PMC Dental Institute, Faisalabad Medical University, Faisalabad 38000, Pakistan;
| | | | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +966-507544691
| |
Collapse
|
12
|
Zhou J, Li L, Cui D, Xie X, Yang W, Yan F. Effects of gold nanoparticles combined with human β-defensin 3 on the alveolar bone loss of periodontitis in rat. Biomed Eng Online 2021; 20:115. [PMID: 34819109 PMCID: PMC8611896 DOI: 10.1186/s12938-021-00954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human β-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. METHODS A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro-computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. RESULTS Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. CONCLUSIONS AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.
Collapse
Affiliation(s)
- Jing Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Xiaoting Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
13
|
Outcomes of Bifocal Transport Distraction Osteogenesis for Repairing Complicated Unilateral Alveolar Cleft. J Craniofac Surg 2021; 33:e187-e191. [PMID: 34608012 DOI: 10.1097/scs.0000000000008260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES This study aimed to assess the outcomes of bifocal transport distraction osteogenesis (BTDO) for closure of a wide or previously failed unilateral alveolar cleft. METHODS Patient in this study had a large alveolar cleft that had not healed with bone grafts. Bone-borne distraction was used under general anesthesia. Intraoperative complications as bleeding and trauma to neighboring teeth were documented. Postoperative complications as wound dehiscence, paresthesia, infection, and bleeding were recorded. Complications including changes in bone segment movement, activation force loss, and occlusal interferences were observed during the activation phase. During the consolidation phase, problems including gingival recession, pulpal vitality, and cosmetic concerns were evaluated. Postoperative, periapical, occlusal, and orthopantomograms were used to evaluate bone gain and bone generation in the distracted area. RESULTS Ten patients (6 males and 4 females) with unilateral alveolar cleft were included, with mean age of 9.5 ± 2.5 years. Average cleft width was 12.25 ± 2.54 mm. There was no intraoperative or postoperative bleeding. Only 1 patient had a wound dehiscence (10%). All patients had mild postoperative pain and edema in upper lip. Only 1 patient complained of numbness in infraorbital nerve's innervated region. Radiographs revealed bone formation in cleft area and bone healing in distracted chamber. CONCLUSIONS Bifocal transport distraction osteogenesis improves success rate of an alveolar cleft treatment especially a wide or previously failed one. This technique associated with minimal complications when careful planning and cooperation from a patient are combined. It can be recommended when other modalities for alveolar cleft are failed. Patients also tolerate the device well.
Collapse
|
14
|
Zhang D, Sun XC, Wang H, Li JH, Yin LQ, Yan YF, Ma X, Xia HF. Repair of alveolar cleft bone defects in rabbits by active bone particles containing modified rhBMP-2. Regen Med 2021; 16:833-846. [PMID: 34463127 DOI: 10.2217/rme-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: A model of alveolar cleft phenotype was established in rabbits to evaluate the effect of active bone particles containing modified rhecombinant human BMP-2 on the repair of the alveolar cleft. Methods: 2-month-old Japanese white rabbits were selected and randomly divided into four groups: normal, control, material and BMP groups. Blood biochemical analysis, skull tomography (microfocus computerized tomography), and histological and immunohistochemical staining analysis of paraffin sections were performed 3 and 6 months after operation. Results: Both types of collagen particles showed good biocompatibility and promoted bone regeneration. The effect of active bone particles on bone repair and regeneration was better than that of bone collagen particles. Conclusions: Active bone particles containing modified rhecombinant human BMP-2 can be used for incisors regeneration.
Collapse
Affiliation(s)
- Dan Zhang
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| | - Xue-Cheng Sun
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| | - Hu Wang
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| | - Jian-Hui Li
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| | - Li-Qiang Yin
- Yantai Zhenghai Bio-Tech Co., Ltd. Shandong, 264006, China
| | - Yu-Fang Yan
- Yantai Zhenghai Bio-Tech Co., Ltd. Shandong, 264006, China
| | - Xu Ma
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| | - Hong-Fei Xia
- Reproductive & Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.,Graduate Schools, Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
15
|
张 月, 刘 克, 闫 明, 王 蔚. [Effect of concentrated growth factor combined with mineralized collagen material on the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells and the osteogenic effect in vivo]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:295-302. [PMID: 33719236 PMCID: PMC8171756 DOI: 10.7507/1002-1892.202009070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/02/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the effects of concentrated growth factor (CGF) combined with mineralized collagen (MC) materials on the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs) and their osteogenic effects in vivo, and to provide a theoretical basis for the combined application of CGF and MC materials in bone defect regeneration and repair. METHODS CGF was prepared from venous blood of healthy volunteers, and then CGF extracts (CGFe) were prepared. In vitro experiment: human BMSCs (hBMSCs) were divided into 4 groups. Groups A, B, and C were cultured with α-MEM medium [containing 10% fetal bovine serum (FBS) and 1% double antibody] containing 2%, 5%, and 10%CGFe, respectively; group D was cultured with α-MEM medium (containing 10%FBS and 1% double antibody) without CGFe. Scanning electron microscopy was used to observe the effect of CGFe on cell adhesion. Cell counting kit 8 (CCK-8) was used to detect the effect of CGFe on cell proliferation. After osteogenic induction, alkaline phosphatase (ALP) activity was detected and Western blot was performed to detect osteopontin (OPN) expression. In vivo experiment: Eighteen New Zealand big-eared rabbits were used to prepare circular bone defect models on the left and right mandibles, and implant CGF gel (prepared from autologous venous blood)+MC material (volume ratio 1∶1, experimental group) and simple MC material (control group), respectively. At 4, 8, and 12 weeks after operation, 6 rabbits were sacrificed respectively to obtain materials, and Micro-CT scanning was performed to observe the formation of new bone and material degradation in vivo. RESULTS In vitro experiments: Scanning electron microscopy showed that the cells of groups A, B, and C spread better on MC materials than group D, with more pseudopodia. CCK-8 method showed that different concentrations of CGFe could promote cell proliferation, and the absorbance ( A) value of cells cultured for 2, 3, 5, and 7 days was in the order of group C>group B>group A>group D, the differences were significant ( P<0.05). ALP activity test showed that its activity was proportional to the osteogenic induction time and CGFe concentration ( P<0.05). Western blot analysis of osteogenic induction culture for 14 days showed that the relative expression of OPN protein in groups A, B, and C was significantly higher than that in group D, and the higher the CGFe concentration, the higher the relative expression of OPN protein ( P<0.05). In vivo experiment: Micro-CT observation showed that the new bone formation and material degradation of the experimental group were better than those of the control group at 4, 8, and 12 weeks after operation. Quantitative detection showed that the volume of new bone volume, new bone volume fraction, trabeculae number, and trabecular thickness of the experimental group were significantly higher than those of the control group at each time point, the residual material volume, residual material volume fraction, and trabecular separation were significantly lower than those of the control group, all showing significant differences ( P<0.05). CONCLUSION CGF can effectively promote the adhesion, proliferation, and osteogenic differentiation of BMSCs on MC materials, and 10%CGFe has the most significant effect. The combined application of CGF and MC material can significantly promote bone formation in vivo.
Collapse
Affiliation(s)
- 月 张
- 中国医科大学口腔医学院·附属口腔医院综合科 辽宁省口腔疾病重点实验室(沈阳 110002)Comprehensive Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang Liaoning, 110002, P.R.China
| | - 克达 刘
- 中国医科大学口腔医学院·附属口腔医院综合科 辽宁省口腔疾病重点实验室(沈阳 110002)Comprehensive Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang Liaoning, 110002, P.R.China
| | - 明 闫
- 中国医科大学口腔医学院·附属口腔医院综合科 辽宁省口腔疾病重点实验室(沈阳 110002)Comprehensive Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang Liaoning, 110002, P.R.China
| | - 蔚 王
- 中国医科大学口腔医学院·附属口腔医院综合科 辽宁省口腔疾病重点实验室(沈阳 110002)Comprehensive Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang Liaoning, 110002, P.R.China
| |
Collapse
|
16
|
Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13040599. [PMID: 33671329 PMCID: PMC7923188 DOI: 10.3390/polym13040599] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Collagen type I is the main organic constituent of the bone extracellular matrix and has been used for decades as scaffolding material in bone tissue engineering approaches when autografts are not feasible. Polymeric collagen can be easily isolated from various animal sources and can be processed in a great number of ways to manufacture biomaterials in the form of sponges, particles, or hydrogels, among others, for different applications. Despite its great biocompatibility and osteoconductivity, collagen type I also has some drawbacks, such as its high biodegradability, low mechanical strength, and lack of osteoinductive activity. Therefore, many attempts have been made to improve the collagen type I-based implants for bone tissue engineering. This review aims to summarize the current status of collagen type I as a biomaterial for bone tissue engineering, as well as to highlight some of the main efforts that have been made recently towards designing and producing collagen implants to improve bone regeneration.
Collapse
|