1
|
Salama A, El-Fadaly AA, Elgohary R. Effect of atorvastatin on lipopolysaccharide-induced lung inflammation and hypoxia in mice; modulation of HIF-1α, CINC and MIP-2. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 39632508 DOI: 10.1080/08923973.2024.2436089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Acute lung injury is a crucial pathological state, particularly in some severe infectious respiratory illnesses, distinguished by acute inflammation, pulmonary edema, hypoxia, and neutrophil recruitment. Cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) play a vital role in neutrophil recruitment. OBJECTIVE Here, we validated the potential repressing effect of atorvastatin on acute lung injury induced by lipopolysaccharide (LPS) in mice. MATERIALS AND METHODS Mice were injected with LPS (250 μg/kg; i.p.) daily for 7 days, and atorvastatin (25 and 50 mg/kg; orally) daily along with LPS. RESULTS Atorvastatin ameliorated oxidative stress as evidenced by increased reduced glutathione (GSH) and nuclear factor-erythroid 2 related factor 2 (Nrf2) levels and decreased malondialdehyde (MDA) levels. Additionally, it lessened inflammatory biomarkers including tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), CINC, and MIP-2, as well as hypoxia biomarker hypoxia-inducible factor-1α (HIF-1α). Moreover, atorvastatin slowed the progression of lung tissue histological lesions. CONCLUSION Collectively, the present study suggests that, atorvastatin effectively protects against LPS-induced acute lung injury through inhibition of oxidative stress, inflammation, hypoxia, and neutrophil recruitment.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Rania Elgohary
- Department of Narcotics, Ergogenics and Poisons, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Shi K, Chen X, Zhao Y, Li P, Chai J, Qiu J, Shen Z, Guo J, Jie W. Identification of potential therapeutic targets for nonischemic cardiomyopathy in European ancestry: an integrated multiomics analysis. Cardiovasc Diabetol 2024; 23:338. [PMID: 39267096 PMCID: PMC11396958 DOI: 10.1186/s12933-024-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Nonischemic cardiomyopathy (NISCM) is a clinical challenge with limited therapeutic targets. This study aims to identify promising drug targets for NISCM. METHODS We utilized cis-pQTLs from the deCODE study, which includes data from 35,559 Icelanders, and SNPs from the FinnGen study, which includes data from 1,754 NISCM cases and 340,815 controls of Finnish ancestry. Mendelian randomization (MR) analysis was performed to estimate the causal relationship between circulating plasma protein levels and NISCM risk. Proteins with significant associations underwent false discovery rate (FDR) correction, followed by Bayesian colocalization analysis. The expression of top two proteins, LILRA5 and NELL1, was further analyzed using various NISCM datasets. Descriptions from the Human Protein Atlas (HPA) validated protein expression. The impact of environmental exposures on LILRA5 was assessed using the Comparative Toxicogenomics Database (CTD), and molecular docking identified the potential small molecule interactions. RESULTS MR analysis identified 255 circulating plasma proteins associated with NISCM, with 16 remaining significant after FDR correction. Bayesian colocalization analysis identified LILRA5 and NELL1 as significant, with PP.H4 > 0.8. LILRA5 has a protective effect (OR = 0.758, 95% CI, 0.670-0.857) while NELL1 displays the risk effect (OR = 1.290, 95% CI, 1.199-1.387) in NISCM. Decreased LILRA5 expression was found in NISCM such as diabetic, hypertrophic, dilated, and inflammatory cardiomyopathy, while NELL1 expression increased in hypertrophic cardiomyopathy. HPA data indicated high LILRA5 expression in neutrophils, macrophages and endothelial cells within normal heart and limited NELL1 expression. Immune infiltration analysis revealed decreased neutrophil in diabetic cardiomyopathy. CTD analysis identified several small molecules that affect LILRA5 mRNA expression. Among these, Estradiol, Estradiol-3-benzoate, Gadodiamide, Topotecan, and Testosterone were found to stably bind to the LILRA5 protein at the conserved VAL-15 or THR-133 residues in the Ig-like C2 domain. CONCLUSION Based on European Ancestry Cohort, this study reveals that LILRA5 and NELL1 are potential therapeutic targets for NISCM, with LILRA5 showing particularly promising prospects in diabetic cardiomyopathy. Several small molecules interact with LILRA5, implying potential clinical implication.
Collapse
Affiliation(s)
- Kaijia Shi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Xu Chen
- Department of Intensive Care Unit, Yuhuangding Hospital, Yantai, 264000, China
| | - Yangyang Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Peihu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Jinxuan Chai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Jianmin Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Zhihua Shen
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China.
| | - Wei Jie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Li N, Dai X, Yang F, Sun Y, Wu X, Zhou Q, Chen K, Sun J, Bi W, Shi L, Yu Y. Spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells maintain pluripotency of stem cells by regulating hypoxia-inducible factors. Biol Res 2023; 56:17. [PMID: 37016436 PMCID: PMC10074860 DOI: 10.1186/s40659-023-00421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.
Collapse
Affiliation(s)
- Ni Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China, 201318
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China, 201318
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xiaofeng Dai
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Kai Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China, 200072
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032
| | - Le Shi
- Department of Stomatology, Shanghai Jing'an District Dental Clinic, Shanghai, China, 15 Pingxingguan Road, 200040.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China, 180 Fenglin Road, 200032.
| |
Collapse
|
4
|
Ding J, Mei S, Cheng W, Ni Z, Yu C. Curcumin treats endometriosis in mice by the HIF signaling pathway. Am J Transl Res 2022; 14:2184-2198. [PMID: 35559378 PMCID: PMC9091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim of this study was to investigate whether curcumin has a therapeutic effect on endometriosis (EM) and to determine the specific mechanism. METHODS Network pharmacology was used to obtain the core targets of curcumin for the treatment of EM and the specific biologic processes involved. A mouse model of EM was constructed and divided into different groups, as follows: control, negative control, curcumin, and denogestrel. The number, volume, and degree of adhesions of the lesions in each group were measured. The levels of IL-1β, IL-6, and VEGFA in the peritoneal cavity were measured by enzyme-linked immunosorbent assay (ELISA). Western blot and Q-PCR were used to detect HIF-1α and VEGFA proteins and gene expression levels in the lesion tissues. RESULTS Network pharmacology suggested that curcumin treated EM through the HIF signaling pathway, of which IL-6, HIF-1α, and VEGFA are key targets. The number of lesions, volume, and degree of adhesions were significantly reduced in the curcumin group compared to the negative control group and the control group (P < 0.05). IL-6, IL-1β, and VEGFA levels were reduced in the peritoneal fluid (P < 0.05). HIF-1α and VEGFA protein and gene levels were significantly reduced in the lesions (P < 0.05). No modulation of HIF-1α was shown by denogestins. CONCLUSION Curcumin played a role in the treatment of EM by modulating the HIF signaling pathway, improving the local hypoxia of the lesion, and reducing the inflammatory state of EM.
Collapse
Affiliation(s)
- Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University)Shanghai 200433, China
| | - Shanshan Mei
- Department of Gynecology of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University)Shanghai 200433, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University)Shanghai 200433, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University)Shanghai 200433, China
- Department of Gynecology of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
5
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|