1
|
Wankhede NL, Koppula S, Ballal S, Doshi H, Kumawat R, Raju SS, Arora I, Sammeta SS, Khalid M, Zafar A, Taksande BG, Upaganlawar AB, Gulati M, Umekar MJ, Kopalli SR, Kale MB. Virtual reality modulating dynamics of neuroplasticity: Innovations in neuro-motor rehabilitation. Neuroscience 2025; 566:97-111. [PMID: 39722287 DOI: 10.1016/j.neuroscience.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Virtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders. This comprehensive review delves into the therapeutic applications of VR, focusing on its role in addressing multiple conditions such as stroke, traumatic brain injuries, phobias, and post-traumatic stress disorder. It highlights how VR can enhance motor recovery, cognitive rehabilitation, and emotional resilience, showcasing its potential as an innovative and effective tool in neurological rehabilitation. Integrating molecular neuroscience with VR technology allows for a deeper understanding of the molecular mechanisms underlying neuroplasticity, opening doors to personalized interventions and precise treatment strategies for individuals with neurological impairments. Moreover, the review emphasizes the ethical considerations and challenges that come with implementing VR-based interventions in clinical practice, stressing the importance of data privacy, informed consent, and collaborative interdisciplinary efforts. By leveraging advanced molecular imaging techniques, VR-based research methodologies, and computational modelling, the review envisions a future where VR technology plays a central role in revolutionizing neuroscience research and clinical neurorehabilitation, ultimately providing tailored and impactful solutions for individuals facing neurological challenges.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Hardik Doshi
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rohit Kumawat
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - SSrinadh Raju
- Department of Computer Science and Engineering, Raghu Engineering College, Vishakhapatnam 531162, Andhra Pradesh, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Zhang W, Li W, Liu X, Zhao Q, Gao M, Li Z, Lv P, Yin Y. Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials. J Neuroeng Rehabil 2024; 21:209. [PMID: 39616389 PMCID: PMC11607983 DOI: 10.1186/s12984-024-01491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are common non-invasive brain stimulation (NIBS) methods for functional recovery after stroke. Motor imagery (MI) can be used in the rehabilitation of limb motor function after stroke, but its effectiveness remains to be rigorously established. Furthermore, there is a growing interest in the combined application of NIBS with MI, yet the evidence regarding its impact on the recovery of upper limb function after stroke is inconclusive. This meta-analysis aimed to demonstrate whether combining the two is superior to NIBS alone or MI alone to provide a reference for clinical decision-making. METHODS PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG, and VIP databases were searched for randomized controlled trials on the effects of MI combined NIBS in motor function recovery after stroke until February 2024. The outcomes of interest were associated with body functions or structure (impairment) and activity (functional). The primary outcome was assessed with the Fugl-Meyer assessment of the upper extremity (FMA-UE) for motor function of the upper limbs and the modified Barthel Index (MBI) for the ability to perform daily living activities. For secondary outcomes, functional activity level was measured using wolf motor function test (WMFT) and action research arm test (ARAT), and cortical excitability was assessed using cortical latency of motor evoked potential (MEP-CL) and central motor conduction time (CMCT). The methodological quality of the selected studies was evaluated using the evidence‑based Cochrane Collaboration's tool. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models. RESULTS A total of 14 articles, including 886 patients, were reviewed in the meta-analysis. In comparison with MI or NIBS alone, the combined therapy significantly improved the motor function of the upper limbs (MD = 5.43; 95% CI 4.34-6.53; P < 0.00001) and the ability to perform activities of daily living (MD = 11.07; 95% CI 6.33-15.80; P < 0.00001). Subgroup analyses showed an interaction between the stage of stroke, the type of MI, and the type of NIBS with the effect of the combination therapy. CONCLUSION The combination of MI and NIBS may be a promising therapeutic approach to enhance upper limb motor function, functional activity, and activities of daily living after stroke. SYSTEMATIC REGISTRATION PROSPERO registration CRD42023493073.
Collapse
Affiliation(s)
- Wendong Zhang
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaolu Liu
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Qingqing Zhao
- Shanxi Health Vocational College, Jinzhong, 030619, China
| | - Mingyu Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zesen Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050000, China
| | - Peiyuan Lv
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Yu Yin
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050051, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China.
| |
Collapse
|
3
|
Curiel RC, Nakamura T, Kuzuoka H, Kanaya T, Prahm C, Matsumoto K. Virtual Reality Self Co-Embodiment: An Alternative to Mirror Therapy for Post-Stroke Upper Limb Rehabilitation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2390-2399. [PMID: 38437102 DOI: 10.1109/tvcg.2024.3372035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We present Virtual Reality Self Co-embodiment, a new method for post-stroke upper limb rehabilitation. It is inspired by mirror therapy, where the patient's healthy arm is involved in recovering the affected arm's motion. By tracking the user's head, wrists, and fingers' positions, our new approach allows the handicapped arm to control a digital avatar in order to pursue a reaching task. We apply the concept of virtual co-embodiment to use the information from the unaffected arm and complete the affected limb's impaired motion, which is our added unique feature. This requires users to mechanically involve the incapacitated area as much as possible, prioritizing actual movement rather than the sole imagination of it. As a result, subjects will see a seemingly normally functional virtual arm primarily controlled by their handicapped extremity, but with the constant support of their healthy limb's motion. Our experiment compares the task execution performance and embodiment perceived when interacting with both mirror therapy and our proposed technique. We found that our approach's provided sense of ownership is mildly impacted by users' motion planning response times, which mirror therapy does not exhibit. We also observed that mirror therapy's sense of ownership is moderately affected by the subject's proficiency while executing the assigned task, which our new method did not display. The results indicate that our proposed method provides similar embodiment and rehabilitation capabilities to those perceived from existing mirror therapy. This experiment was performed in healthy individuals to have an unbiased comparison of how mirror therapy's and VRSelfCo's task performance and degree of virtual embodiment compare, but future work explores the possibility of applying this new approach to actual post-stroke patients.
Collapse
|
4
|
Javvaji CK, Reddy H, Vagha JD, Taksande A, Kommareddy A, Reddy NS. Immersive Innovations: Exploring the Diverse Applications of Virtual Reality (VR) in Healthcare. Cureus 2024; 16:e56137. [PMID: 38618363 PMCID: PMC11016331 DOI: 10.7759/cureus.56137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Virtual reality (VR) has experienced a remarkable evolution over recent decades, evolving from its initial applications in specific military domains to becoming a ubiquitous and easily accessible technology. This thorough review delves into the intricate domain of VR within healthcare, seeking to offer a comprehensive understanding of its historical evolution, theoretical foundations, and current adoption status. The examination explores the advantages of VR in enhancing the educational experience for medical students, with a particular focus on skill acquisition and retention. Within this exploration, the review dissects the applications of VR across diverse medical disciplines, highlighting its role in surgical training and anatomy/physiology education. While navigating the expansive landscape of VR, the review addresses challenges related to technology and pedagogy, providing insights into overcoming technical hurdles and seamlessly integrating VR into healthcare practices. Additionally, the review looks ahead to future directions and emerging trends, examining the potential impact of technological advancements and innovative applications in healthcare. This review illuminates the transformative potential of VR as a tool poised to revolutionize healthcare practices.
Collapse
Affiliation(s)
- Chaitanya Kumar Javvaji
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anirudh Kommareddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Naramreddy Sudheesh Reddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Guo D, Hu J, Wang D, Wang C, Yue S, Xu F, Zhang Y. Variation in brain connectivity during motor imagery and motor execution in stroke patients based on electroencephalography. Front Neurosci 2024; 18:1330280. [PMID: 38370433 PMCID: PMC10869475 DOI: 10.3389/fnins.2024.1330280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Objective The objective of this study was to analyze the changes in connectivity between motor imagery (MI) and motor execution (ME) in the premotor area (PMA) and primary motor cortex (MA) of the brain, aiming to explore suitable forms of treatment and potential therapeutic targets. Methods Twenty-three inpatients with stroke were selected, and 21 right-handed healthy individuals were recruited. EEG signal during hand MI and ME (synergy and isolated movements) was recorded. Correlations between functional brain areas during MI and ME were compared. Results PMA and MA were significantly and positively correlated during hand MI in all participants. The power spectral density (PSD) values of PMA EEG signals were greater than those of MA during MI and ME in both groups. The functional connectivity correlation was higher in the stroke group than in healthy people during MI, especially during left-handed MI. During ME, functional connectivity correlation in the brain was more enhanced during synergy movements than during isolated movements. The regions with abnormal functional connectivity were in the 18th lead of the left PMA area. Conclusion Left-handed MI may be crucial in MI therapy, and the 18th lead may serve as a target for non-invasive neuromodulation to promote further recovery of limb function in patients with stroke. This may provide support for the EEG theory of neuromodulation therapy for hemiplegic patients.
Collapse
Affiliation(s)
- Dongju Guo
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jinglu Hu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dezheng Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chongfeng Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Zhang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|