1
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
3
|
Golyarnik N, Абраменко І, Movchan G, Martina Z, Dyagil I, Chumak A, Bazyka D. IMMUNOPHENOTYPE OF LEUKEMIC CELLS IN CHRONIC LYMPHOCYTIC LEUKEMIA PATIENTS WITH NOTCH1 AND SF3B1 GENE MUTATIONS. Exp Oncol 2023; 45:322-327. [PMID: 38186023 DOI: 10.15407/exp-oncology.2023.03.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The typical chronic lymphocytic leukemia (CLL) immunophenotype is vital for diagnosis, but the expression of some antigens varies and has prognostic value. There are data that reduced CD20 expression is associated with NOTCH1 and SF3B1 gene mutations. AIM To determine a high-risk group of CLL patients for prediction of unfavorable NOTCH1 and SF3B1 gene mutations based on immunophenotyping of leukemic cells. MATERIALS AND METHODS Flow cytometric and molecular-genetic analysis (mutations of NOTCH1, SF3B1, and TP53 genes using the polymerase chain reaction followed by direct sequencing) was performed in a group of 86 previously untreated CLL patients. RESULTS The immunophenotype of leukemic cells of all examined patients met the criteria of CLL diagnosis. NOTCH1 gene mutations were found in 21 patients (24.4%), and SF3B1 gene mutations - in 7 patients (8.1%). There were no TP53 gene mutations among the examined patients. A decreased number of CD20+CD5+ cells and a downward trend in the relative index of mean fluorescence intensity (iMFI) of CD20+ cells were found in patients with NOTCH1 and SF3B1 gene mutations. Based on the iMFI level (higher and/or lower than 3.0) and the number of CD20+CD5+ cells among all B-cells (higher and/or lower than 50%), we distinguished CLL cases with low and relatively high levels of CD20 antigen expression. Using ROC analysis and the parameter of low CD20 antigen expression, we could predict the presence of NOTCH1 and SF3B1 gene mutations in 73.3 ± 0.06% of patients (p = 0.001). The risk of NOTCH1 and SF3B1 gene mutations in cases with low CD20 antigen expression was 6.96 (95% CI = 2.53-19.18; p = 0.0001). The revealed regularities were statistically significant for patients in whom the diagnosis was established in all Binet - Rai stages except A0-AI. CONCLUSION Our data confirmed a reduced CD20 expression in CLL patients with NOTCH1 and SF3B1 mutations. In addition, an approach was proposed to identify high-risk CLL patients for prediction of such mutations: previously untreated CLL patients at advanced Binet - Rai stages (BII, CIII, CIV) with a reduced number of double-positive CD20+CD5+ cells in peripheral blood and/or low iMFI of CD20+ cells.
Collapse
Affiliation(s)
- N Golyarnik
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - І Абраменко
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - G Movchan
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - Z Martina
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - I Dyagil
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - A Chumak
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - D Bazyka
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| |
Collapse
|
4
|
Burtt JJ, Akiba S, Bazyka D, Coleman CN, Hatch M, Bernstein JL. Radiation disasters - long term consequences: reflections and summary of a recent symposium. Int J Radiat Biol 2022; 99:561-568. [PMID: 36154906 DOI: 10.1080/09553002.2022.2110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Julie J Burtt
- Canadian Nuclear Safety Commission, Ottawa, ON, Canada
| | - Suminori Akiba
- Hirosaki University Center for Radiation Support and Safety, Hirosaki, Japan
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.,Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services, Washington, DC, USA
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
5
|
Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S, Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. Cognitive effects of low dose of ionizing radiation - Lessons learned and research gaps from epidemiological and biological studies. ENVIRONMENT INTERNATIONAL 2021; 147:106295. [PMID: 33341586 DOI: 10.1016/j.envint.2020.106295] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.
Collapse
Affiliation(s)
- Elisa Pasqual
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - François Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, 53 Illenko str., Kyiv, Ukraine
| | - Arvid Nordenskjold
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation. Institut of Radiation Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Florent de Vathaire
- Radiation Epidemiology Teams, INSERM Unit 1018, University Paris Saclay, Gustave Roussy, 94800 Villejuif, France
| | | | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
6
|
Bazyka D, Hatch M, Gudzenko N, Cahoon EK, Drozdovitch V, Little MP, Chumak V, Bakhanova E, Belyi D, Kryuchkov V, Golovanov I, Mabuchi K, Illienko I, Belayev Y, Bodelon C, Machiela MJ, Hutchinson A, Yeager M, Berrington de González A, Chanock SJ. Field Study of the Possible Effect of Parental Irradiation on the Germline of Children Born to Cleanup Workers and Evacuees of the Chornobyl Nuclear Accident. Am J Epidemiol 2020; 189:1451-1460. [PMID: 32613232 DOI: 10.1093/aje/kwaa095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Although transgenerational effects of exposure to ionizing radiation have long been a concern, human research to date has been confined to studies of disease phenotypes in groups exposed to high doses and high dose rates, such as the Japanese atomic bomb survivors. Transgenerational effects of parental irradiation can be addressed using powerful new genomic technologies. In collaboration with the Ukrainian National Research Center for Radiation Medicine, the US National Cancer Institute, in 2014-2018, initiated a genomic alterations study among children born in selected regions of Ukraine to cleanup workers and/or evacuees exposed to low-dose-rate radiation after the 1986 Chornobyl (Chernobyl) nuclear accident. To investigate whether parental radiation exposure is associated with germline mutations and genomic alterations in the offspring, we are collecting biospecimens from father-mother-offspring constellations to study de novo mutations, minisatellite mutations, copy-number changes, structural variants, genomic insertions and deletions, methylation profiles, and telomere length. Genomic alterations are being examined in relation to parental gonadal dose, reconstructed using questionnaire and measurement data. Subjects are being recruited in exposure categories that will allow examination of parental origin, duration, and timing of exposure in relation to conception. Here we describe the study methodology and recruitment results and provide descriptive information on the first 150 families (mother-father-child(ren)) enrolled.
Collapse
|
7
|
Ulanowski A, Shemiakina E, Güthlin D, Becker J, Preston D, Apostoaei AI, Hoffman FO, Jacob P, Kaiser JC, Eidemüller M. ProZES: the methodology and software tool for assessment of assigned share of radiation in probability of cancer occurrence. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:601-629. [PMID: 32851496 PMCID: PMC7544726 DOI: 10.1007/s00411-020-00866-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 05/20/2023]
Abstract
ProZES is a software tool for estimating the probability that a given cancer was caused by preceding exposure to ionising radiation. ProZES calculates this probability, the assigned share, for solid cancers and hematopoietic malignant diseases, in cases of exposures to low-LET radiation, and for lung cancer in cases of exposure to radon. User-specified inputs include birth year, sex, type of diagnosed cancer, age at diagnosis, radiation exposure history and characteristics, and smoking behaviour for lung cancer. Cancer risk models are an essential part of ProZES. Linking disease and exposure to radiation involves several methodological aspects, and assessment of uncertainties received particular attention. ProZES systematically uses the principle of multi-model inference. Models of radiation risk were either newly developed or critically re-evaluated for ProZES, including dedicated models for frequent types of cancer and, for less common diseases, models for groups of functionally similar cancer sites. The low-LET models originate mostly from the study of atomic bomb survivors in Hiroshima and Nagasaki. Risks predicted by these models are adjusted to be applicable to the population of Germany and to different time periods. Adjustment factors for low dose rates and for a reduced risk during the minimum latency time between exposure and cancer are also applied. The development of the methodology and software was initiated and supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) taking up advice by the German Commission on Radiological Protection (SSK, Strahlenschutzkommission). These provide the scientific basis to support decision making on compensation claims regarding malignancies following occupational exposure to radiation in Germany.
Collapse
Affiliation(s)
- Alexander Ulanowski
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- IAEA Environment Laboratories, International Atomic Energy Agency, 2444, Seibersdorf, Austria
| | - Elena Shemiakina
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Denise Güthlin
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, 85764, Oberschleissheim, Germany
| | - Janine Becker
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | | | - F Owen Hoffman
- Oak Ridge Center for Risk Analysis, Inc, Oak Ridge, TN, USA
| | - Peter Jacob
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Markus Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
8
|
Wu Y, Poulos RC, Reddel RR. Role of POT1 in Human Cancer. Cancers (Basel) 2020; 12:cancers12102739. [PMID: 32987645 PMCID: PMC7598640 DOI: 10.3390/cancers12102739] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The segmentation of eukaryotic genomes into discrete linear chromosomes requires processes to solve several major biological problems, including prevention of the chromosome ends being recognized as DNA breaks and compensation for the shortening that occurs when linear DNA is replicated. A specialized set of six proteins, collectively referred to as shelterin, is involved in both of these processes, and mutations in several of these are now known to be involved in cancer. Here, we focus on Protection of Telomeres 1 (POT1), the shelterin protein that appears to be most commonly involved in cancer, and consider the clinical significance of findings about its biological functions and the prevalence of inherited and acquired mutations in the POT1 gene. Abstract Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yangxiu Wu
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Rebecca C. Poulos
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- Correspondence: ; Tel.: +61-2-8865-2901
| |
Collapse
|
9
|
Bazyka D, Ilienko I, Golyarnik N, Belyaev O, Lyaskivska O. Gene Expression and Cellular Markers of Occupational Radiation Exposure in Chernobyl Shelter Construction Workers. HEALTH PHYSICS 2020; 119:37-43. [PMID: 32483042 DOI: 10.1097/hp.0000000000001277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low-dose radiation effects were studied in Ukrainian personnel of the Chernobyl exclusion zone. The aim of this study was to determine the influence of borderline exposure to annual professional limits and age on expression of molecular markers. Study groups included 300 radiation workers performing construction work on the New Safe Confinement (Arch) upon the Chernobyl "Shelter" [external dose, 26.1 ± 18.1 mSv; age, 43.1 ± 10.3 y overall and 48.7 ± 5.9 y for 69 control persons]. Methods included gene expression using RT-PCR, flow cytometry of lymphocyte antigens, gamma-H2AX, Cyclin D1 expression, and relative telomere length using flow-FISH. A statistically significant upregulation of VEGFA BAX, DDB2, NFKB1 was shown at doses below 35 mSv. In workers aged under 40 y with doses higher than 35 mSv, an upregulation of 16 genes was revealed-VEGFA, TERF2, TERF1, BIRC5, BAX, TP53, DDB2, CDKN1B, CDKN2A, NFKB2, MAPK14, TGFBR1, MKNK2, CDKN1A, NFKB1, TP53I3; and four genes were downregulated-MADD, FASL, CSF2, and TERT. In workers older than 40 y, 8 genes were upregulated and 12 were downregulated. All groups showed an increased and dose-dependent gamma-H2AX expression. Downregulation of CCND1 genes in older groups was accompanied by lower numbers of Cyclin D1 protein expression and lower CD3 and CD4 cell counts. Upregulation of CSF2 in those over 40 y old positively correlated with B-cell and NK-cell counts. A non-linear type of gene expression response was demonstrated: in doses over 35 mSv for those over 40 y, the increased expression of gamma-H2AX is associated with upregulation of cell survival positive regulators-BIRC5, BRCA1, DDB2, CCND1, TERT genes, and longer telomeres; the younger age group was characterized by TERF1 and TERF2 upregulation and telomere shortening.
Collapse
Affiliation(s)
- Dimitry Bazyka
- National Research Center for Radiation Medicine, Ukraine
| | | | | | | | | |
Collapse
|
10
|
Shen E, Xiu J, Lopez GY, Bentley R, Jalali A, Heimberger AB, Bainbridge MN, Bondy ML, Walsh KM. POT1 mutation spectrum in tumour types commonly diagnosed among POT1-associated hereditary cancer syndrome families. J Med Genet 2020; 57:664-670. [PMID: 31937561 DOI: 10.1136/jmedgenet-2019-106657] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The shelterin complex is composed of six proteins that protect and regulate telomere length, including protection of telomeres 1 (POT1). Germline POT1 mutations are associated with an autosomal dominant familial cancer syndrome presenting with diverse malignancies, including glioma, angiosarcoma, colorectal cancer and melanoma. Although somatic POT1 mutations promote telomere elongation and genome instability in chronic lymphocytic leukaemia, the contribution of POT1 mutations to development of other sporadic cancers is largely unexplored. METHODS We performed logistic regression, adjusted for tumour mutational burden, to identify associations between POT1 mutation frequency and tumour type in 62 368 tumours undergoing next-generation sequencing. RESULTS A total of 1834 tumours harboured a non-benign mutation of POT1 (2.94%), of which 128 harboured a mutation previously reported to confer familial cancer risk in the setting of germline POT1 deficiency. Angiosarcoma was 11 times more likely than other tumours to harbour a POT1 mutation (p=1.4×10-20), and 65% of POT1-mutated angiosarcoma had >1 mutations in POT1. Malignant gliomas were 1.7 times less likely to harbour a POT1 mutation (p=1.2×10-3) than other tumour types. Colorectal cancer was 1.2 times less likely to harbour a POT1 mutation (p=0.012), while melanoma showed no differences in POT1 mutation frequency versus other tumours (p=0.67). CONCLUSIONS These results confirm a role for shelterin dysfunction in angiosarcoma development but suggest that gliomas arising in the context of germline POT1 deficiency activate a telomere-lengthening mechanism that is uncommon in gliomagenesis.
Collapse
Affiliation(s)
- Erica Shen
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Xiu
- Medical Affairs, Caris Life Sciences Inc, Phoenix, Arizona, USA
| | - Giselle Y Lopez
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rex Bentley
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Melissa L Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA .,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Cancers after Chornobyl: From Epidemiology to Molecular Quantification. Cancers (Basel) 2019; 11:cancers11091291. [PMID: 31480731 PMCID: PMC6770927 DOI: 10.3390/cancers11091291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 11/17/2022] Open
Abstract
An overview and new data are presented from cancer studies of the most exposed groups of the population after the Chornobyl accident, performed at the National Research Center for Radiation Medicine (NRCRM). Incidence rates of solid cancers were analyzed for the 1990-2016 period in cleanup workers, evacuees, and the general population from the contaminated areas. In male cleanup workers, the significant increase in rates was demonstrated for cancers in total, leukemia, lymphoma, and thyroid cancer, as well as breast cancer rates were increased in females. Significantly elevated thyroid cancer incidence was identified in the male cleanup workers cohort (150,813) in 1986-2012 with an overall standardized incidence ratio (SIR) of 3.35 (95% CI: 2.91-3.80). A slight decrease in incidence rates was registered starting at 25 years after exposure. In total, 32 of 57 deaths in a group of cleanup workers with confirmed acute radiation syndrome (ARS) or not confirmed ARS (ARS NC) were due to blood malignancies or cancer. Molecular studies in cohort members included gene expression and polymorphism, FISH, relative telomere length, immunophenotype, micronuclei test, histone H2AX, and TORCH infections. Analysis of chronic lymphocytic leukemia (CLL) cases from the cohort showed more frequent mutations in telomere maintenance pathway genes as compared with unexposed CLL patients.
Collapse
|
12
|
Bilous NI, Abramenko IV, Chumak AA, Dyagil IS, Martina ZV, Saenko V, Bazyka DA. THE SPECTRUM OF TP53, SF3B1, AND NOTCH1 MUTATIONS IN CHRONIC LYMPHOCYTIC LEUKEMIA PATIENTS EXPOSED TO IONIZING RADIATION DUE TO THE CHORNOBYL NPP ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2018; 23:283-301. [PMID: 30582853 DOI: 10.33145/2304-8336-2018-23-283-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE to analyze TP53, NOTCH1 and SF3B1 mutations in chronic lymphocytic leukemia (CLL) patients, sufferersof Chornobyl NPP accident to clarify the possible relationship between ionizing radiation (IR) and CLL. METHODS Mutations of TP53, NOTCH1, and SF3B1 genes were studied by direct sequencing in the main group of 106 CLLpatients exposed to IR due to Chornobyl NPP accident and in the control group of 130 IR non-exposed CLL patients. RESULTS We found TP53 and SF3B1 mutations with similar incidence in both groups - 11.3 % and 10.0 % in the maingroup, and 12.7 % and 11.5 % in the control group, respectively. In contrast, the frequency of NOTCH1 mutationswas lower in IR-exposed patients (6.7 % vs 17.7 %; p = 0.012). TP53 mutations were seen with equal frequency amongmutated (11.1 %) and unmutated (11.8 %) immunoglobulin heavy-chain variable gene (IGHV) cases in IR-exposedCLL patients, while the tendency to prevalence of TP53 mutations in unmutated compared with mutated IGHV caseswas found in the control group (14.1 % and 5.6 %, correspondingly; p = 0.178). In IR-exposed group SF3B1 muta-tions were combined with mutations in TP53 almost in half of detected cases. In opposite, in the control group therewas mutual exclusivity between SF3B1 and TP53 lesions (p = 0.001). Among IR-exposed CLL patients we found two dif-ferent cases with identical rare mutation of TP53 gene - c.665C>T substitution (Pro222Leu). This substitution is verylikely to represent inherited TP53 mutation, which may influence CLL development under IR exposure. CONCLUSION Our preliminary data suggest that TP53 abnormalities are involved in CLL development in subjectsexposed at the Chornobyl accident and also a possible connection between inherited sensitivity to ionizing radia-tion caused by mutation in TP53, radiation and CLL development.
Collapse
Affiliation(s)
- N I Bilous
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| | - I V Abramenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| | - A A Chumak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| | - I S Dyagil
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| | - Z V Martina
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| | - V Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - D A Bazyka
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Melnykova str., Kyiv, 04050, Ukraine
| |
Collapse
|