1
|
Alkhathami AG, El-Fakharany EM, El-Sayed MH, Atwa A, Ali FK, Hamad N, Askar H, Ashry M. Chemopreventive effect of Pistacia vera leaf extract against Mammary Carcinoma Induced by Dimethyl-Benz(a)anthracene in vivo and in vitro: potential role of antioxidant, antiinflammatory and immune mechanisms. Food Chem Toxicol 2025:115229. [PMID: 39755267 DOI: 10.1016/j.fct.2024.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
This study aimed to define the antitumor effect of ethanolic extract of Pistacia vera leaves (PEE) toward breast cancer both in vitro and in vivo using dimethyl-benz(a)anthracene (DMBA)-induced breast tumor in adult female rats. PEE showed a potent antioxidant effect toward both DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radicals with IC50 values of 72.6 and 107.4 μg/mL, respectively. PEE exerted its cytotoxicity in dose-dependent manners with favorable selectivity toward MCF-7 and MDA cancer cells, sparing normal WI-38 cells. Through considerable decreases in blood CA15.3, CEA, CA19.9, TNF-α, IL1β, IL-4, IL-6, and IL-10 levels, as well as mammary MDA and NO levels, PEE administration effectively improved the damage caused by breast cancer. Additionally, PEE exhibited remarkable increasing in mammary GSH content, GPx, SOD and CAT activities. The histopathological findings demonstrated the therapeutic potential of PEE that successfully improved the mammary gland alterations induced by DMBA and aborted cancer development. PEE has shown intriguing potential as an anti-inflammatory and antioxidant drug by targeting the expression of pro-inflammatory cytokines and oxidative stress indicators, which has helped to successfully treat malignancies in clinical settings. Collectively, our findings support chemo-preventive potential of PEE against DMBA-induced breast tumor in rats via enhancing apoptosis and immune response.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt.
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ahmed Atwa
- Department of Zoology, Faculty of Science, Al-Azhar University, 11884 Cairo, Egypt
| | - Fatma Khairallah Ali
- Chemistry Department, Faculty of Science and Art EL Marj, Benghazi University, EL Marj City, Libya
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hussam Askar
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assuit, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assuit, Egypt
| |
Collapse
|
2
|
Lin H, Han Q, Wang J, Zhong Z, Luo H, Hao Y, Jiang Y. Methylation-Mediated Silencing of RBP7 Promotes Breast Cancer Progression through PPAR and PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:9039110. [PMID: 36276273 PMCID: PMC9584705 DOI: 10.1155/2022/9039110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Retinoid-binding protein7 (RBP7) is a member of the cellular retinol-binding protein (CRBP) family, which is involved in the pathogenesis of breast cancer. The study aims to illustrate the prognostic value and the potential regulatory mechanisms of RBP7 expression in breast cancer. Bioinformatics analysis with the TCGA and CPTAC databases revealed that the mRNA and protein expression levels of RBP7 in normal were higher compared to breast cancer tissues. Survival analysis displayed that the lower expression of RBP7, the worse the prognosis in ER-positive (ER+) breast cancer patients. Genomic analysis showed that low expression of RBP7 correlates with its promoter hypermethylation in breast cancer. Functional enrichment analysis demonstrated that downregulation of RBP7 expression may exert its biological influence on breast cancer through the PPAR pathway and the PI3K/AKT pathway. In summary, we identified RBP7 as a novel biomarker that is helpful for the prognosis of ER+ breast cancer patients. Promoter methylation of RBP7 is involved in its gene silencing in breast cancer, thus regulating the occurrence and development of ER+ breast cancer through the PPAR and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Hong Lin
- The fifth Clinical Medical College of Henan University of Chinese Medicine, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105 Henan, China
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Zhaoqian Zhong
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| | - Yibin Hao
- The fifth Clinical Medical College of Henan University of Chinese Medicine, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105 Henan, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China
| |
Collapse
|
3
|
4,5-diazafenylfluorene-rhodanine conjugates promote anoikis in A375 cells via inhibiting PPAR-γ expression. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Huang M, Chen L, Mao X, Liu G, Gao Y, You X, Gao M, Sehouli J, Sun P. ERRα inhibitor acts as a potential agonist of PPARγ to induce cell apoptosis and inhibit cell proliferation in endometrial cancer. Aging (Albany NY) 2020; 12:23029-23046. [PMID: 33197888 PMCID: PMC7746384 DOI: 10.18632/aging.104049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/14/2020] [Indexed: 04/11/2023]
Abstract
Two transcriptional factors, peroxisome proliferator-activated receptor-γ (PPARγ) and estrogen-related receptor-α (ERRα), have been reported to be key regulators of cellular energy metabolism. However, the relationship between ERRα and PPARγ in the development of endometrial cancer (EC) is still unclear. The expression levels of PPARγ and ERRα in EC were evaluated by quantitative real-time PCR, western blot, tissue array and immunohistochemistry. A significant negative correlation was identified between PPARγ and ERRα expression in women with EC (ρ=-0.509, P<0.001). Bioinformatics analyses showed that PPARγ and ERRα can activate or inhibit the same genes involved in cell proliferation and apoptosis through a similar ModFit. ERRα activation or PPARγ inhibition could promote proliferation and inhibit apoptosis through the Bcl-2/Caspase3 pathways. Both PPARγ and ERRα can serve as serum tumor markers. Surprisingly, as evaluated by receiver operating characteristic (ROC) curves and a logistic model, a PPARγ/ERRα ratio≤1.86 (area under the ROC curve (AUC)=0.915, Youden index=0.6633, P<0.001) was an independent risk factor for endometrial carcinogenesis (OR=14.847, 95% CI= 1.6-137.748, P=0.018). EC patients with PPARγ(-)/ERRα(+) had the worst overall survival and disease-free survival rates (both P<0.001). Thus, a dynamic imbalance between PPARγ and ERRα leads to endometrial carcinogenesis and predicts the EC prognosis.
Collapse
Affiliation(s)
- Meimei Huang
- Department of Gynecology and Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Lili Chen
- Reproductive Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian, P.R. of China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Guifen Liu
- Department of Gynecology and Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yuqin Gao
- Department of Gynecology and Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xiaoqing You
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Min Gao
- Department of Gynecologic Oncology, Peking University Cancer Hospital, Beijing 100046, China
| | - Jalid Sehouli
- Department of Gynecology, Campus Virchow Clinic, CharitéUniversitätsmedizin Berlin, Humboldt University of Berlin, Berlin 13353, Germany
| | - Pengming Sun
- Department of Gynecology and Obstetrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
5
|
Marino N, German R, Rao X, Simpson E, Liu S, Wan J, Liu Y, Sandusky G, Jacobsen M, Stoval M, Cao S, Storniolo AMV. Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. NPJ Breast Cancer 2020; 6:50. [PMID: 33083529 PMCID: PMC7538898 DOI: 10.1038/s41523-020-00191-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Histologically normal tissue adjacent to the tumor can provide insight of the microenvironmental alterations surrounding the cancerous lesion and affecting the progression of the disease. However, little is known about the molecular changes governing cancer initiation in cancer-free breast tissue. Here, we employed laser microdissection and whole-transcriptome profiling of the breast epithelium prior to and post tumor diagnosis to identify the earliest alterations in breast carcinogenesis. Furthermore, a comprehensive analysis of the three tissue compartments (microdissected epithelium, stroma, and adipose tissue) was performed on the breast donated by either healthy subjects or women prior to the clinical manifestation of cancer (labeled "susceptible normal tissue"). Although both susceptible and healthy breast tissues appeared histologically normal, the susceptible breast epithelium displayed a significant upregulation of genes involved in fatty acid uptake/transport (CD36 and AQP7), lipolysis (LIPE), and lipid peroxidation (AKR1C1). Upregulation of lipid metabolism- and fatty acid transport-related genes was observed also in the microdissected susceptible stromal and adipose tissue compartments, respectively, when compared with the matched healthy controls. Moreover, inter-compartmental co-expression analysis showed increased epithelium-adipose tissue crosstalk in the susceptible breasts as compared with healthy controls. Interestingly, reductions in natural killer (NK)-related gene signature and CD45+/CD20+ cell staining were also observed in the stromal compartment of susceptible breasts. Our study yields new insights into the cancer initiation process in the breast. The data suggest that in the early phase of cancer development, metabolic activation of the breast, together with increased epithelium-adipose tissue crosstalk may create a favorable environment for final cell transformation, proliferation, and survival.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Ed Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - George Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Max Jacobsen
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Miranda Stoval
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
6
|
TNBG-5602, a novel derivative of quinoxaline, inhibits liver cancer growth via upregulating peroxisome proliferator-activated receptor γ in vitro and in vivo. J Pharm Pharmacol 2019; 71:1684-1694. [DOI: 10.1111/jphp.13159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
TNBG-5602 is a newly synthesized compound with an isoquinoline structure. In the present study, we demonstrated the anticancer effect of TNBG-5602 in in-vitro and in-vivo models and investigated its possible anticancer mechanism.
Methods
The antiproliferation effect of TNBG-5602 in vitro was evaluated in human liver cancer cell line QGY-7701. The acute toxicity of TNBG-5602 was evaluated in mice. The anticancer activity of TNBG-5602 in vivo was assessed in a xenograft model of human liver cancer cell line QGY-7701.
Key findings
The results of CCK-8 assay showed that TNBG-5602 can effectively inhibit the proliferation of liver cancer cells in vitro. The acute toxicity test in mice showed that the LD50 of TNBG-5602 was 172 mg/kg. In a xenograft liver cancer model, TNBG-5602 could remarkably inhibit the growth of tumours. During in-vitro and in-vivo studies, we noted that TNBG-5602 could induce lipid accumulation in cancer cells and tissues. Further study indicated that the anticancer effect of TNBG-5602 may be exerted through activating peroxisome proliferator-activated receptor γ (PPARγ) and downregulating proliferating cell nuclear antigen (PCNA).
Conclusions
Our results suggested that TNBG-5602 might exert potent anticancer activity through increasing the expression of PPARγ.
Collapse
|
7
|
Immunofluorescence Labeling of Nuclear Receptor Expression in Formalin-Fixed, Paraffin-Embedded Tissue. Methods Mol Biol 2019. [PMID: 31041741 DOI: 10.1007/978-1-4939-9195-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunofluorescent staining (IF) uses antigen-antibody complexes tagged with fluorochromes to observe the expression of proteins within a tissue sample. Multiple groups have described optimized methods to visualize several proteins simultaneously within the same tissue section using immunofluorescence in both mouse and human FFPE tissues. Our group routinely uses an optimized protocol described here to examine nuclear receptor expression in experimental samples from conditional knockout in vivo studies.
Collapse
|
8
|
Furth PA. Peroxisome proliferator-activated receptor gamma and BRCA1. Endocr Relat Cancer 2019; 26:R73-R79. [PMID: 30444720 PMCID: PMC6494719 DOI: 10.1530/erc-18-0449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor gamma agonists have been proposed as breast cancer preventives. Individuals who carry a mutated copy of BRCA1, DNA repair-associated gene, are at increased risk for development of breast cancer. Published data in the field suggest there could be interactions between peroxisome proliferator-activated receptor gamma and BRCA1 that could influence the activity of peroxisome proliferator-activated receptor gamma agonists for prevention. This review explores these possible interactions between peroxisome proliferator-activated receptor gamma, peroxisome proliferator-activated receptor gamma agonists and BRCA1 and discusses feasible experimental directions to provide more definitive information on the potential connections.
Collapse
Affiliation(s)
- Priscilla A Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Shi JY, Rubino RE, Nicol CJB. Examining the Role of Nuclear Receptors During In Vivo Chemical-Mediated Breast Tumorigenesis. Methods Mol Biol 2019; 1966:203-210. [PMID: 31041749 DOI: 10.1007/978-1-4939-9195-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) has been used for many decades to induce skin, mammary, and ovarian tumors in mice. There are however a wide range of doses and treatment regimens in the literature that sometimes confound comparative interpretations of different studies. Here we describe a proven method to generate in vivo DMBA-mediated murine mammary tumors to enable consistent studies of the cell targeted role of genes of interest during this process.
Collapse
Affiliation(s)
- Jia Yue Shi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Rachel E Rubino
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Christopher J B Nicol
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
10
|
Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells. J Ginseng Res 2018; 43:319-325. [PMID: 30976170 PMCID: PMC6437553 DOI: 10.1016/j.jgr.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator–activated receptor gamma (PPARγ). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via PPARγ. Methods The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the PPARγ structure using Surflex-Dock in Sybyl-X 2.1.1. Results PPARγ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the PPARγ-specific inhibitor, T0070907. The PPARγ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of PPARγ. Conclusions Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on PPARγ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of PPARγ suggests that the compound binds to PPARγ in a position similar to that of known agonists.
Collapse
|
11
|
Miller WA, Wuertz BR, Ondrey FG. PPARγ-Mediated p21 Induction in Aerodigestive Preneoplastic Cell Lines. Ann Otol Rhinol Laryngol 2018; 127:677-686. [PMID: 30047791 DOI: 10.1177/0003489418787833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oral leukoplakia is defined as a mucous membrane disorder characterized by white patches that cannot be scraped off. Leukoplakia is the most frequent, potentially premalignant oral mucosa disorder and a good candidate for chemopreventive therapies. Pioglitazone activates peroxisome proliferator-activated receptor gamma (PPARγ), which forms a complex with nuclear cofactors and regulates gene expression of a variety of cell-cycle proteins and is currently being tested preclinically and clinically in aerodigestive cancer prevention. METHODS In the present study, we hypothesized that pioglitazone would decrease proliferation of human leukoplakia cells (MSK Leuk1) and transformed bronchial epithelial cells (BEAS-2B) through regulatory changes of G1 checkpoint protein regulators, p21 and cyclin-D1. MSK Leuk1 and BEAS-2B cells were treated with pioglitazone and assayed for cell proliferation and p21 transcriptional activity. RESULTS We discovered pioglitazone significantly inhibited cell proliferation in a dose-dependent fashion. We also observed p21 protein induction after treatment with pioglitazone, which was preceded by measurable increases in p21 mRNA induction. CONCLUSIONS We conclude the PPARγ activator, pioglitazone, can activate p21, which is associated with decreased proliferation in 2 aerodigestive preneoplastic cell lines. In addition, the p21 gene may be a potential hypothesis-driven biomarker in translational studies of pioglitazone as a chemoprevention agent for aerodigestive cancer.
Collapse
Affiliation(s)
- Wendy A Miller
- 1 Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beverly R Wuertz
- 1 Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- 1 Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Atef A, Bedeer AE, Elmonem GA. Evaluation of P21 and peroxisome proliferator-activated receptor gamma as prognostic markers for renal cell carcinoma. EGYPTIAN JOURNAL OF PATHOLOGY 2018; 38:68-77. [DOI: 10.1097/01.xej.0000542227.68517.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Gong MT, Ye SD, Lv WW, He K, Li WX. Comprehensive integrated analysis of gene expression datasets identifies key anti-cancer targets in different stages of breast cancer. Exp Ther Med 2018; 16:802-810. [PMID: 30112036 PMCID: PMC6090421 DOI: 10.3892/etm.2018.6268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is one of the primary threats to women's health worldwide. However, the molecular mechanisms underlying the development of breast cancer remain to be fully elucidated. The present study aimed to investigate specific target gene expression profiles in breast cancer tissues in general and in different breast cancer stages, as well as to explore their functions in tumor development. For integrated analysis, a total of 5 gene expression profiling datasets for 3 different stages of breast cancer (stages I-III) were downloaded from the Gene Expression Omnibus of the National Center for Biotechnology Information. Pre-processing of these datasets was performed using the Robust Multi-array Average algorithm and global renormalization was performed for all studies. Differentially expressed genes between breast cancer patients and controls were estimated using the empirical Bayes algorithm. The Database for Annotation, Visualization and Integrated Discovery web server was used for analyzing the enrichment of the differentially expressed genes in Gene Ontology terms of the category biological process and in Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, breast cancer target genes were downloaded from the Thomson Reuters Integrity Database. We merged these target genes with the genes in breast cancer datasets. Analysis of anti-breast cancer gene networks was performed using the Genome-scale Integrated Analysis of Gene Networks in Tissues web server. The results demonstrated that the normal functions of the cell cycle, cell migration and cell adhesion were altered in all stages of breast cancer. Furthermore, 12 anti-breast cancer genes were identified to be dysregulated in at least one of the three stages. Among all of these genes, ribonucleotide reductase regulatory subunit M2 (RRM2) exhibited the highest degree of interaction with other interacting genes. Analysis of the network interactions revealed that the transcription factor of RRM2 is crucial for cancer development. Other genes, including mucin 1, progesterone receptor and cyclin-dependent kinase 5 regulatory subunit associated protein 3, also exhibited a high degree of interaction with the associated genes. In conclusion, several key anti-breast cancer genes identified in the present study are mainly associated with the regulation of the cell cycle, cell migration, cell adhesion and other cancer-associated cell functions, particularly RRM2.
Collapse
Affiliation(s)
- Meng-Ting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Wen-Wen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China
| |
Collapse
|
14
|
Al-Jameel W, Gou X, Forootan SS, Al Fayi MS, Rudland PS, Forootan FS, Zhang J, Cornford PA, Hussain SA, Ke Y. Inhibitor SBFI26 suppresses the malignant progression of castration-resistant PC3-M cells by competitively binding to oncogenic FABP5. Oncotarget 2018; 8:31041-31056. [PMID: 28415688 PMCID: PMC5458187 DOI: 10.18632/oncotarget.16055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/27/2017] [Indexed: 01/28/2023] Open
Abstract
Castration resistant-prostate cancer is largely impervious to feather hormonal therapy and hence the outlook for patients is grim. Here we use an approach to attach the recently discovered Achilles heel. The experimental treatment established in this study is based on the recent discovery that it is the FABP5-PPARγ-VEGF signalling axis, rather than the androgen receptor pathway, played a dominant role in promoting the malignant progression of castration resistant prostate cancer cells. Treatments have been established in mice by suppressing the biological activity of FABP5 using a chemical inhibitor SBFI26. The inhibitor significantly suppressed the proliferation, migration, invasiveness and colony formation of PC3-M cells in vitro. It also produced a highly significant suppression of both the metastases and the primary tumours developed from cancer cells implanted orthotopically into the prostate glands of the mice. The inhibitor SBFI26 interferes with the FABP5-PPARγ- signalling pathway at the initial stage of the signal transduction by binding competitively to FABP5 to inhibit cellular fatty acid uptake. This avoids the fatty-acid stimulation of PPARγ and prevents it activating the down-stream regulated cancer-promoting genes. This entirely novel experimental approach to treating castration- resistant prostate cancer is completely different from current treatments that are based on androgen-blockade therapy.
Collapse
Affiliation(s)
- Waseem Al-Jameel
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Xiaojun Gou
- Sichuan Antibiotics Industrial Institute, Chengdu University, Chengdu 610081, China
| | - Shiva S Forootan
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Majed Saad Al Fayi
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Philip S Rudland
- Department of Biochemistry, Liverpool University, Liverpool, L69 3GA, United Kingdom
| | - Farzad S Forootan
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Jiacheng Zhang
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Philip A Cornford
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Syed A Hussain
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| | - Youqiang Ke
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, L3 9TA, United Kingdom
| |
Collapse
|
15
|
Li WX, He K, Tang L, Dai SX, Li GH, Lv WW, Guo YC, An SQ, Wu GY, Liu D, Huang JF. Comprehensive tissue-specific gene set enrichment analysis and transcription factor analysis of breast cancer by integrating 14 gene expression datasets. Oncotarget 2018; 8:6775-6786. [PMID: 28036274 PMCID: PMC5351668 DOI: 10.18632/oncotarget.14286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women. Several key genes and pathways have been proven to correlate with breast cancer pathology. This study sought to explore the differences in key transcription factors (TFs), transcriptional regulation networks and dysregulated pathways in different tissues in breast cancer. We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated analysis in three different tissues including breast, blood and saliva. The results showed that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we identified several unreported tissue-specific TFs that may contribute to breast cancer, including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis processes. Among these pathways, the breast tissue showed the most serious impairment and the blood tissue showed a relatively moderate damage, whereas the saliva tissue was almost unaffected. This study could be helpful for future biomarker discovery, drug design, and therapeutic and predictive applications in breast cancers.
Collapse
Affiliation(s)
- Wen-Xing Li
- Institute of Health Sciences, Anhui University, Hefei 230601, Anhui, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Ling Tang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Wen-Wen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Cheng Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - San-Qi An
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Guo-Ying Wu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming 650223, Yunnan, China.,Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming 650223, Yunnan, China.,Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming 650223, Yunnan, China
| |
Collapse
|
16
|
Research Advances in the Correlation between Peroxisome Proliferator-Activated Receptor- γ and Digestive Cancers. PPAR Res 2018; 2018:5289859. [PMID: 29483923 PMCID: PMC5816837 DOI: 10.1155/2018/5289859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a class of ligand-activated nuclear transcription factors, which is a member of type II nuclear receptor superfamily. Previous studies demonstrate that PPARγ is expressed in a variety of tumor tissues and is closely associated with the proliferation and prognosis of digestive system tumors by its roles in mediation of cell differentiation, induction of cell apoptosis, and inhibition of cell proliferation.
Collapse
|
17
|
Zheng N, Shao H, Wu D, Shen D, Lin X. Protective influence of rosiglitazone against testicular ischaemia-reperfusion injury in rats. Andrologia 2018; 50:e12947. [PMID: 29315760 DOI: 10.1111/and.12947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/01/2022] Open
Abstract
Testicular torsion is a urology urgent disease which causes testicular injury and potential sterility. In this study, we explored the protective influence of rosiglitazone on testicular ischaemia-reperfusion damage. There were 28 male Sprague Dawley rats in total, which were assigned randomly to four groups. Group A was blank control one; group B was testicular injury one; group C was rosiglitazone one; group D was rosiglitazone antagonist one. The testicles were counter-rotated after 2 hr and then underwent orchiectomy 24 hr later. We found that testicular tissue structure of rats was seriously damaged in groups B and D. However, group C had better testicular architecture. Similar findings were also shown for lipid peroxidation by evaluating the MDA activity (p < .05). Unlike group B or group D, the levels of inflammation by evaluating the MPO activity, the levels of TNF-a, IL-1 and IL-6 and the expressions of ICAM-1 were prominently lower in group C (p < .05) as well. So our researches demonstrated that rosiglitazone significantly decreased the amount of responsive oxygen radical and regulated inflammatory responses. Rosiglitazone had a protective influence against testicular ischaemia-reperfusion injury in rats and possibly depended on its anti-inflammatory and antioxidant traits.
Collapse
Affiliation(s)
- N Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - H Shao
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - D Wu
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - D Shen
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - X Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Mason C, Wang L, Duggan C, Imayama I, Thomas SS, Wang CY, Korde LA, McTiernan A. Gene expression in breast and adipose tissue after 12 months of weight loss and vitamin D supplementation in postmenopausal women. NPJ Breast Cancer 2017; 3:15. [PMID: 28649655 PMCID: PMC5460115 DOI: 10.1038/s41523-017-0019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue is involved in the etiology of postmenopausal breast cancer, possibly through increased sex steroid hormone production, inflammation, and altered adipokines. Vitamin D may affect these pathways but its effect on gene expression in different tissues has not been examined. Within a double-blind, 12-month placebo-controlled randomized trial, we compared 2000 IU/day oral vitamin D3 supplementation (N = 39) vs. placebo (N = 40) on the expression of 5 genes in breast and adipose tissue in overweight/obese postmenopausal women (50-75 years). All participants had serum 25-hydroxyvitamin D (25(OH)D) levels ≥ 10-<32 ng/mL ("insufficient") and concurrently completed a behavioral weight loss program. Random periareolar fine needle aspiration (RPFNA) and abdominal subcutaneous adipose tissue biopsies were performed at baseline and 12 months. Changes in expression of aromatase (CYP19A1), peroxisome proliferator-activated receptor gamma (PPARG), adiponectin (ADIPOQ), monocyte-chemoattractant protein 1 (MCP-1), and vitamin D receptor (VDR) were analyzed by qRT-PCR. Compared to placebo, 2000 IU vitamin D did not show significant effects on gene expression in breast or adipose tissue. Replete women (i.e., 25(OH)D ≥ 32 ng/mL; N = 17) showed a small decrease in MCP-1 expression compared to an increase among women who remained 'insufficient' despite supplementation (N = 12) (Replete:-1.6% vs. Non-replete: 61.2%, p = 0.015) in breast, but not adipose tissue. No statistically significant differences in gene expression were detected according to degree of weight loss. Vitamin D repletion during weight loss may have different effects on gene expression in breast and adipose tissue. Further research on the localized effects of vitamin D is needed to determine its effect on breast cancer risk.
Collapse
Affiliation(s)
- Caitlin Mason
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Lei Wang
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Catherine Duggan
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Ikuyo Imayama
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Sushma S. Thomas
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Ching-Yun Wang
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
- grid.34477.33Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Larissa A. Korde
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
- grid.34477.33Department of Medicine, University of Washington, Seattle, WA USA
| | - Anne McTiernan
- grid.270240.3Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
- grid.34477.33Department of Epidemiology, University of Washington, Seattle, WA USA
| |
Collapse
|
19
|
PPAR δ as a Metabolic Initiator of Mammary Neoplasia and Immune Tolerance. PPAR Res 2016; 2016:3082340. [PMID: 28077942 PMCID: PMC5203902 DOI: 10.1155/2016/3082340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
PPARδ is a ligand-activated nuclear receptor that regulates the transcription of genes associated with proliferation, metabolism, inflammation, and immunity. Within this transcription factor family, PPARδ is unique in that it initiates oncogenesis in a metabolic and tissue-specific context, especially in mammary epithelium, and can regulate autoimmunity in some tissues. This review discusses its role in these processes and how it ultimately impacts breast cancer.
Collapse
|
20
|
Cheng WY, Huynh H, Chen P, Peña-Llopis S, Wan Y. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone. eLife 2016; 5. [PMID: 27692066 PMCID: PMC5047746 DOI: 10.7554/elife.18501] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI:http://dx.doi.org/10.7554/eLife.18501.001 The immune system can both contribute to cancer progression and restrain the growth of tumors. Some immune cells – called macrophages – create an inflammatory environment around a tumor, which can support the spread of the cancer cells. Independent observations and experiments have shown that a protein called PPARγ can suppress the development and growth of tumors. Drugs called thiazolidinediones (or TZDs for short), which are normally used to treat type 2 diabetes, activate PPARγ and therefore have anti-tumor effects. However, it is not fully understood how PPARγ and TZDs suppress tumor development. Cheng et al. hypothesized that the PPARγ protein and TZDs can inhibit the activity of the inflammatory macrophages that help tumors to develop. To test this, mice were genetically engineered so that their macrophages could not produce the PPARγ protein. These engineered mice were more likely to develop breast cancer than normal. Furthermore, the breast tumors in the modified mice did not shrink when they were treated with TZDs, whereas the tumors of normal mice did. Cheng et al. also found that PPARγ inhibits the ability of macrophages to produce a protein called Gpr132, which itself contributes to inflammation and allows breast cancer cells to grow. Mice that were unable to produce Grp132 displayed less inflammation, and cancer growth was blocked. Drugs that inhibited the activity of Grp132 in normal mice also reduced the ability of breast tumors to spread. Future experiments will need to examine exactly how the Gpr132 proteins produced by macrophages communicate with the cancer cells. Furthermore, developing new drugs that can inhibit Gpr132 could ultimately lead to more effective treatments for cancer. DOI:http://dx.doi.org/10.7554/eLife.18501.002
Collapse
Affiliation(s)
- Wing Yin Cheng
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Peiwen Chen
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Peña-Llopis
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States.,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma. J Ginseng Res 2016; 41:240-246. [PMID: 28701863 PMCID: PMC5489747 DOI: 10.1016/j.jgr.2016.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/19/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods The effects of the KRG on inhibition of hypoxia-induced COX-2 via PPARγ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of PPARγ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. PPARγ protein levels and PPARγ-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the PPARγ inhibitor GW9662. In addition, the inhibition of PPARγ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on PPARγ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly PPARγ and to identify the constituents responsible for this activity.
Collapse
|
22
|
Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2. PLoS One 2016; 11:e0147390. [PMID: 26820738 PMCID: PMC4731085 DOI: 10.1371/journal.pone.0147390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/04/2016] [Indexed: 01/17/2023] Open
Abstract
Prostaglandin reductase 2 (PTGR2) is the enzyme that catalyzes 15-keto-PGE2, an endogenous PPARγ ligand, into 13,14-dihydro-15-keto-PGE2. Previously, we have reported a novel oncogenic role of PTGR2 in gastric cancer, where PTGR2 was discovered to modulate ROS-mediated cell death and tumor transformation. In the present study, we demonstrated the oncogenic potency of PTGR2 in pancreatic cancer. First, we observed that the majority of the human pancreatic ductal adenocarcinoma tissues was stained positive for PTGR2 expression but not in the adjacent normal parts. In vitro analyses showed that silencing of PTGR2 expression enhanced ROS production, suppressed pancreatic cell proliferation, and promoted cell death through increasing 15-keto-PGE2. Mechanistically, silencing of PTGR2 or addition of 15-keto-PGE2 suppressed the expressions of solute carrier family 7 member 11 (xCT) and cystathionine gamma-lyase (CTH), two important providers of intracellular cysteine for the generation of glutathione (GSH), which is widely accepted as the first-line antioxidative defense. The oxidative stress-mediated cell death after silencing of PTGR2 or addition of 15-keto-PGE2 was further abolished after restoring intracellular GSH concentrations and cysteine supply by N-acetyl-L-cysteine and 2-Mercaptomethanol. Our data highlight the therapeutic potential of targeting PTGR2/15-keto-PGE2 for pancreatic cancer.
Collapse
|
23
|
Zhu C, Wei J, Tian X, Li Y, Li X. Prognostic role of PPAR-γ and PTEN in the renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12668-12677. [PMID: 26722456 PMCID: PMC4680401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To explore association of peroxisome proliferator-activated receptor gamma (PPAR-γ) and phosphatase and tensin homolog (PTEN) expressions with prognosis of renal cell carcinoma (RCC). METHODS Our study subjects included 87 RCC tissues, 28 paracarcinoma tissues and 21 normal renal tissues. PPAR-γ and PTEN detection was conducted using immunohistochemistry staining. The association of PPAR-γ and PTEN with the clinical parameters and prognosis of RCC was analyzed. Kaplan-Meier method and Cox's proportional hazards regression model were used for exploring the relation between variables and prognosis. RESULTS Among normal renal tissues, para-carcinoma tissues and renal cell carcinomas, positive PPAR-γ expression presented with a progressive tendency (P < 0.001), while positive PTEN expression a degressive tendency (P < 0.001). PPAR-γ expressions were closely related to tumor size, clinical stage and lymph node metastases (all P < 0.05). PTEN expressions were in close association with tumor size, Fuhrman grading, lymph node metastases (all P < 0.05). PPAR-γ expressions were in a negative relation with PTEN expressions (r = -0.417, P < 0.001). Negative PPAR-γ expressions confer a significantly higher overall survival rate than positive PPAR-γ expressions (P = 0.015), while negative PTEN expressions confer a significantly lower overall survival rate than positive PTEN expressions (P = 0.003). Clinical staging, Fuhrman grading, lymph node metastases, PPAR-γ and PTEN were independent prognostic factors for prognosis (all P < 0.05). CONCLUSION PPAR-γ and PTEN expressions are related to the clinical parameters and prognosis of RCC and may be a biomarker for prognosis of RCC.
Collapse
Affiliation(s)
- Chaoyang Zhu
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, P. R. China
| | - Jinxing Wei
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, P. R. China
| | - Xin Tian
- Department of Urinary Surgery, Huaihe Hospital, Henan UniversityKaifeng 475000, P. R. China
| | - Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan UniversityKaifeng 475000, P. R. China
| | - Xiaodong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan UniversityKaifeng 475000, P. R. China
| |
Collapse
|