1
|
Yao S, Liu X, Feng Y, Li Y, Xiao X, Han Y, Xia S. Unveiling the Role of HGF/c-Met Signaling in Non-Small Cell Lung Cancer Tumor Microenvironment. Int J Mol Sci 2024; 25:9101. [PMID: 39201787 PMCID: PMC11354629 DOI: 10.3390/ijms25169101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is characterized by several molecular alterations that contribute to its development and progression. These alterations include the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), human epidermal growth factor receptor 2 (HER2), and mesenchymal-epithelial transition factor (c-MET). Among these, the hepatocyte growth factor (HGF)/c-MET signaling pathway plays a crucial role in NSCLC. In spite of this, the involvement of the HGF/c-MET signaling axis in remodeling the tumor microenvironment (TME) remains relatively unexplored. This review explores the biological functions of the HGF/c-MET signaling pathway in both normal and cancerous cells, examining its multifaceted roles in the NSCLC tumor microenvironment, including tumor cell proliferation, migration and invasion, angiogenesis, and immune evasion. Furthermore, we summarize the current progress and clinical applications of MET-targeted therapies in NSCLC and discuss future research directions, such as the development of novel MET inhibitors and the potential of combination immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (S.Y.); (X.L.); (Y.F.); (Y.L.); (X.X.); (Y.H.)
| |
Collapse
|
2
|
Wolfram L, Gimpel C, Schwämmle M, Clark SJ, Böhringer D, Schlunck G. The impact of substrate stiffness on morphological, transcriptional and functional aspects in RPE. Sci Rep 2024; 14:7488. [PMID: 38553490 PMCID: PMC11344127 DOI: 10.1038/s41598-024-56661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Alterations in the structure and composition of Bruch's membrane (BrM) and loss of retinal pigment epithelial (RPE) cells are associated with various ocular diseases, notably age-related macular degeneration (AMD) as well as several inherited retinal diseases (IRDs). We explored the influence of stiffness as a major BrM characteristic on the RPE transcriptome and morphology. ARPE-19 cells were plated on soft ( E = 30 kPa ) or stiff ( E = 80 kPa ) polyacrylamide gels (PA gels) or standard tissue culture plastic (TCP). Next-generation sequencing (NGS) data on differentially expressed small RNAs (sRNAs) and messenger RNAs (mRNAs) were validated by qPCR, immunofluorescence or western blotting. The microRNA (miRNA) fraction of sRNAs grew with substrate stiffness and distinct miRNAs such as miR-204 or miR-222 were differentially expressed. mRNA targets of differentially expressed miRNAs were stably expressed, suggesting a homeostatic effect of miRNAs. mRNA transcription patterns were substrate stiffness-dependent, including components of Wnt/beta-catenin signaling, Microphthalmia-Associated Transcription Factor (MITF) and Dicer. These findings highlight the relevance of mechanical properties of the extracellular matrix (ECM) in cell culture experiments, especially those focusing on ECM-related diseases, such as AMD.
Collapse
Affiliation(s)
- Lasse Wolfram
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Clara Gimpel
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, Schlosspark-Klinik Charlottenburg, Berlin, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon J Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Abdullah AR, Gamal El-Din AM, El-Mahdy HA, Ismail Y, El-Husseiny AA. The crucial role of fascin-1 in the pathogenesis, metastasis, and chemotherapeutic resistance of breast cancer. Pathol Res Pract 2024; 254:155079. [PMID: 38219494 DOI: 10.1016/j.prp.2023.155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ayman M Gamal El-Din
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
4
|
Wang H, Wang WH, Wang W, Ma JH, Su XQ, Zhang LL, Hou YL, Liu JB, Ren JJ, Luo XL, Hao M. Folate deficiency promotes cervical squamous carcinoma SiHa cells progression by targeting miR-375/FZD4/β-catenin signaling. J Nutr Biochem 2024; 124:109489. [PMID: 37926400 DOI: 10.1016/j.jnutbio.2023.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/07/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Epidemiological studies suggest an association between folate deficiency (FD) and cervical squamous cell carcinoma (SCC) progression. However, the underlying mechanism is unclear. Our study showed that FD-driven downregulation of miR-375 promoted proliferation of SCC SiHa cells and progression of xenograft tumors developed from SiHa; however, the exact mechanism of this process remained unclear. The current study aimed to elucidate the underlying mechanisms by which FD promotes the progression of SiHa cells by downregulating miR-375 expression. The results showed that miR-375 acted as a suppressor of SCC and inhibited the proliferation, migration, and invasion of SiHa cells. The FZD4 gene was identified as a target gene of miR-375, which can reverse the anti-onco effect of miR-375 and promote the proliferation and migration of SiHa cells. Furthermore, the regulatory effects of miR-375 and FZD4 on SiHa cells may be achieved by activating the β-catenin signaling pathway. Moreover, FD may regulate the expression of miR-375 by regulating its DNA methylation level in the promoter region. In conclusion, our study reveals that FD regulates the miR-375/FZD4 axis by increasing the methylation of the miR-375 promoter, thereby activating β-catenin signaling to promote SiHa cells progression. This study may provide new insights into the role of folic acid in the prevention and treatment of SCC.
Collapse
Affiliation(s)
- Hui Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen-Hao Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Hong Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peaking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peaking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiao-Qiang Su
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li-Li Zhang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong-Li Hou
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Bing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing-Jing Ren
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Lin Luo
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Hao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Zhang D, Pan F, Zhu M, Li N, Liu M. Exosomes derived miR-362 exacerbates pneumonia by increasing Interleukin-6 via targeting VENTX. ENVIRONMENTAL TOXICOLOGY 2023; 38:2298-2309. [PMID: 37334766 DOI: 10.1002/tox.23867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Pneumonia is a condition characterized by lung damage resulting from a robust immune response by the host. While the defense and immunity against bacterial lung infections have been extensively studied, little is known about the specific immune factors involved in the progression of bacterial pneumonia. To address this knowledge gap, our study aimed to compare normal lung tissues with pneumonia tissues using various techniques, including HE staining, RNA sequencing, RT-PCR, and Elisa assay. Our analysis revealed a significant increase in the levels of interleukin-6 (IL-6) in pneumonia tissues compared to normal lung tissues. To further investigate the underlying mechanism, we extracted exosomes from both pneumonia and normal lung tissues using ultracentrifugation. The exosomes were then examined using electron microscopy, diameter analysis, and western blot assay. RNA sequencing of the exosomes revealed an upregulation of several microRNAs (miRNAs), with miR-362 exhibiting the most significant change. This finding was confirmed through RT-PCR analysis conducted on lung tissues and alveolar lavage fluid. To gain insights into the specific target genes of miR-362, we employed bioinformatics analysis, which identified VENTX as a potential target gene. This finding was further validated through RT-PCR, western blot, and luciferase assay. Our experimental evidence demonstrated that miR-362 regulates VENTX expression, as evidenced by the use of miR-362 mimics or inhibitors on lung cells. Furthermore, we discovered that exosomes derived from pneumonia tissues upregulate IL-6 production through the miR-362/VENTX axis. Importantly, the blocking of IL-6 generation, which is facilitated by miR-362 inhibitor and VENTX overexpression lentivirus, can be achieved by treating exosomes. Moreover, we conducted in vivo experiments using pneumonia models. Rats were treated with IL-6, miR-362 mimics, or VENTX knock-down lentivirus. The results demonstrated a worse prognosis for rats treated with these factors, indicating their potential as prognostic markers. Taken together, our study suggests that exosomes facilitate IL-6 generation by transferring miR-362, thereby suppressing VENTX transcription. Consequently, the IL-6/miR-362/VENTX axis emerges as a promising therapeutic target for pneumonia.
Collapse
Affiliation(s)
- Dongqing Zhang
- Department of General Practie, Minhang Hospital, Fudan University, Shanghai, China
| | - Fei Pan
- Department of General Practie, Minhang Hospital, Fudan University, Shanghai, China
| | - Minjie Zhu
- Department of General Practie, Minhang Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of General Practie, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Department of General Practie, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lei S, Du X, Tan K, He X, Zhu Y, Zhao S, Yang Z, Dou G. CRP‑1 promotes the malignant behavior of hepatocellular carcinoma cells via activating epithelial‑mesenchymal transition and Wnt/β‑catenin signaling. Exp Ther Med 2023; 26:314. [PMID: 37273753 PMCID: PMC10236095 DOI: 10.3892/etm.2023.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/18/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that cysteine rich protein 1 (CRP-1) is dysregulated in several types of human cancer; however, its role in HCC is poorly understood. Therefore, the current study aimed to investigate the role of CRP-1 in HCC. Western blotting and reverse transcription-quantitative PCR results showed that CRP-1 was upregulated in HCC cell lines. Furthermore, for in vitro experiments, CRP-1 was knocked down and overexpressed in the HCC cell lines Hep 3B2.1-7 and BEL-7405, respectively. c-Myc and proliferating cell nuclear antigen upregulation, and cleaved caspase 3 and poly(ADP-ribose) polymerase downregulation suggested that CRP-1 silencing could inhibit the proliferation and colony-forming ability of HCC cells, and induce apoptosis. In addition, CRP-1 overexpression promoted the malignant behavior of HCC cells and induced epithelial-mesenchymal transition (EMT), as verified by E-cadherin downregulation, and N-cadherin and vimentin upregulation. Additionally, CRP-1 overexpression promoted the nuclear translocation of β-catenin, and activated the expression of cyclin D1 and matrix metalloproteinase-7. Furthermore, inhibition of Wnt/β-catenin signaling, following cell treatment with XAV-939, an inhibitor of the Wnt/β-catenin signaling pathway, abrogated the effects of CRP-1 on enhancing the proliferation and migration of HCC cells. These findings indicated that the regulatory effect of CRP-1 on HCC cells could be mediated by the Wnt/β-catenin signaling pathway. Overall, CRP-1 could promote the proliferation and migration of HCC cell lines, partially via promoting EMT and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shixiong Lei
- Department of Interventional Medicine, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xilin Du
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Kai Tan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaojun He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yejing Zhu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shoujie Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Gang Dou
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
7
|
Kulkarni NP, Vaidya B, Narula AS, Sharma SS. Caffeic Acid Phenethyl Ester (CAPE) Attenuates Paclitaxel-induced Peripheral Neuropathy: A Mechanistic Study. Curr Neurovasc Res 2022; 19:293-302. [PMID: 36043777 DOI: 10.2174/1567202619666220829104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is a debilitating pain syndrome produced as a side effect of antineoplastic drugs like paclitaxel. Despite efforts, the currently available therapeutics suffer from serious drawbacks like unwanted side effects and poor efficacy and provide only symptomatic relief. Hence, there is a need to find new therapeutic alternatives for the treatment of chemotherapy-induced peripheral neuropathy. OBJECTIVE The objective of this study was to explore the protective potential of caffeic acid phenethyl ester in paclitaxel-induced neuropathic pain. METHODS We examined the effects of caffeic acid phenethyl ester by administering paclitaxel (2 mg/kg, intraperitoneal) to female Sprague Dawley rats on four alternate days to induce neuropathic pain, followed by the administration of caffeic acid phenethyl ester (10 and 30 mg/kg, intraperitoneally). RESULTS Rats that were administered paclitaxel showed a substantially diminished pain threshold and nerve functions after 28 days. A significantly increased protein expression of Wnt signalling protein (β-catenin), inflammatory marker (matrix metalloproteinase 2) and a decrease in endogenous antioxidant (nuclear factor erythroid 2-related factor 2) levels were found in paclitaxel administered rats in comparison to the naïve control group. Caffeic acid phenethyl ester (10 and 30 mg/kg, intraperitoneal) showed improvements in behavioural and nerve function parameters along with reduced expression of β-catenin, matrix metalloproteinase 2 and an increase in nuclear factor erythroid 2- related factor 2 protein expression. CONCLUSION The present study suggests that caffeic acid phenethyl ester attenuates chemotherapyinduced peripheral neuropathy via inhibition of β-catenin and matrix metalloproteinase 2 and increases nuclear factor erythroid 2-related factor 2 activation.
Collapse
Affiliation(s)
- Namrata Pramod Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Punjab 160062, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Punjab 160062, India
| | - Acharan S Narula
- Narula Research Llc, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Punjab 160062, India
| |
Collapse
|
8
|
Yuan X, Zhu L, Wang Y, Zhang T, Jin Y, Li Y, Zeng M, Yu G. Liposome Nanoparticles Carrying miR-22 Suppress Proliferation, Invasion and Epithelial–Mesenchymal Transition (EMT) of Laryngeal Squamous Cell Carcinoma by Targeting Wingless-Related Integration Site (WNT) Pathway. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abnormal miR-22 level is related to laryngeal squamous cell carcinoma (LSCC) progression. This study mainly assessed its role in proliferation, invasion and EMT of LSCC and their possible mechanisms of action. HN4 was collected, and corresponding groups were set as; blank group, positive
control group, miR-22 group and MIRNA-22 NC group. Pathway inhibitor group and pathway agonist group were also set. The expressions of miR-22, EMT-related genes, cell proliferation rate, invasion rate, β-catenin and Cyclin D1 were observed. Results revealed that, expressions of
miR-22 and e-cadherin were higher in the blank group and miR-22 NC group, while N-cadherin and Vimentin levels were lower. Moreover, miR-22 and EMT-related genes in the positive control group and miR-22 group were opposite (P <0.05). The proliferation rate and invasion rate of blank
and miR-22 NC groups were also lower, while positive control and miR-22 groups showed different changes (P <0.05). β-catenin and Cyclin D1 expressions in the blank group and miR-22 NC group were increased compared to other two groups. The proliferation rate, invasion
rate, expression of N-cadherin and Vimentin were higher and E-cadherin was lower in blank and pathway agonist group, which was opposite in the pathway inhibitor group (P < 0.05). β-catenin and Cyclin D1 protein levels in blank and pathway agonist groups were higher than
pathway inhibitor group (P < 0.05). A binding region between miR-22 gene sequence and 3′UTR 215-229 sequence of Wnt gene was found and Wnt was found to be the target gene for miR-22. The fluorescence intensity of mutant plasmid was higher than wild-type plasmid (P <0.05).
miR-22 can inhibit LSCC proliferation, invasion and EMT and the main mechanism of action is related to the Wnt signaling pathway. MiR-22 targeted Wnt gene and inhibited Wnt signaling pathway activity, lower key factor beta catenin expression Wnt pathways, thereby inhibiting factor laryngeal
squamous cancer cells proliferation, Cyclin D1 expression, resulting in inhibition of cell proliferation, and EMT process at the same time, reducing the cell invasion ability, inhibiting the growth of laryngeal squamous cancer cells. Eventually, the Wnt pathways or miR-22 all can be used as
targets for laryngeal squamous carcinoma.
Collapse
Affiliation(s)
- Xingzhong Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Li Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ying Jin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yangsong Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Mengting Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Guodong Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
9
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
10
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Muro A, Nguewa P, Manzano-Román R. miRNAs in the regulation of mTOR signaling and host immune responses: The case of Leishmania infections. Acta Trop 2022; 231:106431. [PMID: 35367408 DOI: 10.1016/j.actatropica.2022.106431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022]
Abstract
Micro RNAs (miRNAs), as regulators of gene expression at the post-transcriptional level, can respond to/or interact with cell signaling and affect the pathogenesis of different diseases/infections. The interaction/crosstalk of miRNAs with various cellular signaling networks including mTOR (as a master regulator of signaling relevant to different cellular mechanisms) might lead to the initiation, progression or restriction of certain disease processes. There are numerous studies that have identified the crosstalk between regulatory miRNA expression and the mTOR pathway (or mTOR signaling regulated by miRNAs) in different diseases which has a dual function in pathogenesis. However, the corresponding information in parasitic infections remains scarce. miRNAs have been suggested as specific targets for therapeutic strategies in several disorders such as parasitic infections. Thus, the targeting of miRNAs (as the modulators/regulators of mTOR) by small molecules and RNA-based therapeutics and consequently managing and modulating mTOR signaling and the downstream/related cell signaling/pathways might shed some light on the design of new therapeutic strategies against parasitic diseases, including Leishmaniasis. Accordingly, the present study attempts to highlight the importance of the crosstalk between regulatory miRNAs and mTOR signaling, and to review the relevant insights into parasitic infections by focusing specifically on Leishmania.
Collapse
|
11
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
12
|
Ryspayeva D, Halytskiy V, Kobyliak N, Dosenko I, Fedosov A, Inomistova M, Drevytska T, Gurianov V, Sulaieva O. Response to neoadjuvant chemotherapy in breast cancer: do microRNAs matter? Discov Oncol 2022; 13:43. [PMID: 35668332 PMCID: PMC9170858 DOI: 10.1007/s12672-022-00507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Conventionally, breast cancer (BC) prognosis and prediction of response to therapy are based on TNM staging, histological and molecular subtype, as well as genetic alterations. The role of various epigenetic factors has been elucidated in carcinogenesis. However, it is still unknown to what extent miRNAs affect the response to neoadjuvant chemotherapy (NACT). This pilot study is focused on evaluating the role of miR-34a, miR-124a, miR-155, miR-137 and miR-373 in response to NACT. METHODS That was a prospective study enrolling 34 patients with histologically confirmed BC of II-III stages. The median age of patients was 53 (47-59.8) years old, 70.6% of whom were HR-positive. MiRs levels were measured in the primary tumor before and after NACT. The response to therapy was assessed after surgery using the Miller-Payne scoring system. To establish the role of miRs in modulating response to NACT the Cox model was applied for analysis. RESULTS BC demonstrated a great variability of miRs expression before and after NACT with no strong links to tumor stage and molecular subtype. Only miR-124a and miR-373 demonstrated differential expression between malignant and normal breast tissues before and after therapy though these distinctions did not impact response to NACT. Besides miR-124a and miR-137 levels after NACT were found to be dependent on HR status. While miR-124a levels increased (p = 0.021) in the tumor tissue, the expression of miR-137 was downregulated (p = 0.041) after NACT in HR positive BC. CONCLUSIONS The study revealed differences in miR-124a and miR-373 expression after NACT in primary BC tissues. Although miRs levels did not impact the response to NACT, we found miR-124a and miR-137 levels to be related to hormonal sensitivity of BC.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine.
| | - Volodymyr Halytskiy
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine.
- Medical Laboratory CSD, Kyiv, 03148, Ukraine.
| | - Iryna Dosenko
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine
| | - Artem Fedosov
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Mariia Inomistova
- Department of Oncohematology and Adjuvant Treatment Methods, National Cancer Institute, Lomonosova str, 33/43, Kyiv, 03022, Ukraine
| | - Tetyana Drevytska
- Bogomolets Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vitalyi Gurianov
- Endocrinology Department, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Kyiv, 03148, Ukraine
- Sumy State University, Sumy, Ukraine
| |
Collapse
|
13
|
Yang X, Cheng Y, Zhou J, Zhang L, Li X, Wang Z, Yin S, Zhai L, Huang T, Wu X, Shen B, Dong Y, Zhao L, Chi Y, Jia Y, Wang J, He Y, Dong X, Xiao H, Wang J. Targeting Cancer Metabolism Plasticity with JX06 Nanoparticles via Inhibiting PDK1 Combined with Metformin for Endometrial Cancer Patients with Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104472. [PMID: 35064767 PMCID: PMC8922133 DOI: 10.1002/advs.202104472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Indexed: 05/23/2023]
Abstract
Diabetes is closely related to the occurrence of endometrial cancer (EC) and its poor prognosis. However, there is no effective clinical treatment for EC patients with diabetes (patientEC+/dia+ ). To explore new therapeutic targets, Ishikawa is cultured with high glucose (IshikawaHG ) mimicking hyperglycemia in patientEC+/dia+ . Subsequently, it is discovered that IshikawaHG exhibits glucose metabolic reprogramming characterized by increased glycolysis and decreased oxidative phosphorylation. Further, pyruvate dehydrogenase kinase 1 (PDK1) is identified to promote glycolysis of IshikawaHG by proteomics. Most importantly, JX06, a novel PDK1 inhibitor combined metformin (Met) significantly inhibits IshikawaHG proliferation though IshikawaHG is resistant to Met. Furthermore, a reduction-sensitive biodegradable polymer is adopted to encapsulate JX06 to form nanoparticles (JX06-NPs) for drug delivery. It is found that in vitro JX06-NPs have better inhibitory effect on the growth of IshikawaHG as well as patient-derived EC cells (PDC) than JX06. Additionally, it is found that JX06-NPs can accumulate to the tumor of EC-bearing mouse with diabetes (miceEC+/dia+ ) after intravenous injection, and JX06-NPs combined Met can significantly inhibit tumor growth of miceEC+/dia+ . Taken together, the study demonstrates that the combination of JX06-NPs and Met can target the cancer metabolism plasticity, which significantly inhibits the growth of EC, thereby provides a new adjuvant therapy for patientsEC+/dia+ .
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yuan Cheng
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Jingyi Zhou
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xingchen Li
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Zhiqi Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Shenyi Yin
- College of Future TechnologyPeking UniversityBeijing100871China
| | - LiRong Zhai
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Ting Huang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Boqiang Shen
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yangyang Dong
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Lijun Zhao
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular BiologyPeking University People's HospitalBeijing100044China
| | - Yuanyuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Jiaqi Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yijiao He
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xiying Dong
- Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100730China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| |
Collapse
|
14
|
Mokabber H, Vatankhah MA, Najafzadeh N. The regulatory role of microRNAs in the development, cyclic changes, and cell differentiation of the hair follicle. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Quercetin potentiates 5-fluorouracil effects in human colon cancer cells through targeting the Wnt/β-catenin signalling pathway: the role of miR-27a. Contemp Oncol (Pozn) 2022; 26:229-238. [PMID: 36381675 PMCID: PMC9641630 DOI: 10.5114/wo.2022.120361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/18/2022] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION 5-fluorouracil (5-FU) is the most widely used chemotherapeutic drug in treating colorectal cancer. However, its toxicity to normal tissues and tumour resistance are the main hurdles to efficient cancer treatment. MiR27-a promotes the proliferation of colon cancer cells by stimulating the Wnt/β-catenin pathway. The present study was conducted to examine whether quercetin (Q) combined with 5-FU improves the anti-proliferative effect of 5-FU on HCT-116 and Caco-2 cell lines through detection of the miR-27a/Wnt/β-catenin signalling pathway. MATERIAL AND METHODS Cell viability in HCT-116 and Caco-2 cell lines following quercetin and 5-FU treatment alone and in combination for 48 hours was determined using the MTT assay. The flow cytometry, quantitative real-time polymerase chain reaction, and ELISA techniques were used. RESULTS Our results showed that combination of quercetin and 5-FU exhibited greater cytotoxic efficacy than did 5-FU alone. Co-administration of both drugs either in combination 1 (1 : 1 Q: 5-FU) or in combination 2 (1 : 0.5 Q: 5-FU) enhanced apoptosis in HCT-116 and Caco-2 cells compared with 5-FU alone and significantly inhibited the expression of miR-27a, leading to upregulation of secreted frizzled-related protein 1 and suppression of Wnt/β-catenin signalling, which was confirmed by a significant decrease in cyclin D1 expression. CONCLUSIONS Quercetin strongly enhanced 5-FU sensitivity via suppression of the miR-27a/Wnt/β-catenin signalling pathway in CRC, which advocates further research of this combination with the lower dose of 5-FU.
Collapse
|
16
|
Wang Q, Miao Y, Qian Z, Chen L, Lu T, Xu Y, Jiang X, Shen Y. MicroRNA-15a-5p plays a role in osteogenic MC3T3-E1 cells differentiation by targeting PDCD4 (programmed cell death 4) via Wnt/β-catenin dependent signaling pathway. Bioengineered 2021; 12:8173-8185. [PMID: 34672248 PMCID: PMC8806754 DOI: 10.1080/21655979.2021.1977766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is defined as a bone condition characterized by bone mass reduction, bone micro-architectural and quality deterioration, leading to compromised strength and increased chances of fracture. Evidence have shown an essential role of microRNAs (miRNAs) in various osteogenic differentiation processes. However, the function of miR-15a-5p in the differentiation of osteogenic cells and possible mechanisms remains unclear. The present study explored the expression of miR-15a-5p in human osteoporosis specimens and during the osteogenic differentiation of MC3T3-E1 cells. Functions of miR-15a-5p were determined using miR-15a-5p mimics and inhibitors. Luciferase assay was used to verify the binding of miR-15a-5p and PDCD4 3ʹUTR. Alizarin Red Staining (ARS) and Alkaline phosphatase (ALP) activity were used to determine the miR-15a-5p role in osteogenic differentiation. Finally, Wnt pathway inhibitor was used to determine the miR-15a-5p/PDCD4/Wnt signaling pathway in regulating osteogenic differentiation. We found miR-15a-5p expression was increased in human osteoporosis specimens and during differentiation of MC3T3-E1 cells. PDCD4 was also identified as a target of miR-15a-5p and was found to be involved in osteogenic differentiation. Further, miR-15a-5p mimics attenuated the effects of PDCD4 overexpression. Finally, use of XAV939 (Wnt pathway inhibitor) downregulated osteogenic differentiation in miR-15a5p/PDCD4/Wnt-dependent signaling pathway. In conclusion, miR-15a-5p induced differentiation of osteoblasts and mineralization by modulating osteoblast differentiation factors, mainly OSX, ALP, OCN, and RUNX2, by inhibiting PDCD4 and Wnt signaling pathways. This study provides a modality for the future use of miR-15a-5p in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yiming Miao
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Zhiyuan Qian
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Lidong Chen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Tong Lu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| |
Collapse
|
17
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
18
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
19
|
Bayatiani MR, Ahmadi A, Aghabozorgi R, Seif F. Concomitant Up-Regulation of Hsa- Mir-374 and Down-Regulation of Its Targets, GSK-3β and APC, in Tissue Samples of Colorectal Cancer. Rep Biochem Mol Biol 2021; 9:408-416. [PMID: 33969134 PMCID: PMC8068448 DOI: 10.52547/rbmb.9.4.408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The WNT-pathway is involved in several cancers, including colorectal cancer (CRC). Many cell signaling components and pathways are controlled by microRNAs. The main purpose of the present study was to investigate the expression of hsa-miR-374, and its two target genes of the Wnt-pathway in CRC clinical samples. METHODS In this study, we predicted the miRNAs targeting key genes of WNT-pathway using bioinformatics algorithms. The expression levels of hsa-miR-374, APC and GSK-3β on 48 pairs of Formalin-Fixed Paraffin-Embedded (FFPE) CRC tumors and marginal-tumors were evaluated using real time-PCR. Additionally, the hsa-miR-374a-5p precursor sequence was amplified by whole-blood DNA as a template. This amplicon was cloned into pEGFP-c1 expression vector and transfected into SW742 cells. Aside from this, MTT assay was performed to evaluate the effect of miR-374 on cell viability. RESULTS The bioinformatics analysis indicated that hsa-miR-374 binds to the regulatory region the key components of WNT-pathway, including APC and GSK-3β considering the recognition elements and mirSVR scores. Our results revealed significant down-regulation of GSK-3β (0.94 times, p= 0.0098) and APC (0.96 times, p= 0.03) and up-regulation of miR-374 (1.22 times, p= 0.0071) on tumor samples compared with their normal pairs. Meanwhile, the results of the over-expression of miR-374 showed down-regulation of APC and GSK-3β. MTT-assay also indicated that the miR-374 increased cell survival. CONCLUSION The results of our study indicated a concomitant change in the expression of miR-374 and its two related target genes, in clinical samples of CRC. Hsa-miR-374 might be as a helpful biomarker or therapeutic target in CRC.
Collapse
Affiliation(s)
- Mohammad Reza Bayatiani
- Department of Radiotherapy and Medical Physics, Arak University of Medical Sciences, Arak, Iran.
| | - Azam Ahmadi
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
| | - Reza Aghabozorgi
- Khansari Hospital and Department of Internal Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Fatemeh Seif
- Department of Radiotherapy and Medical Physics, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
20
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
21
|
Ping MH. Hyperin Controls the Development and Therapy of Gastric Cancer via Regulating Wnt/β-Catenin Signaling. Cancer Manag Res 2020; 12:11773-11782. [PMID: 33235505 PMCID: PMC7680131 DOI: 10.2147/cmar.s270544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hyperin is an effective monomer extracted from Malvaceae plant Abelmoschus, which is a flavonol glycoside compound. Hyperin performs a variety of pharmacological activities, such as analgesia, antioxidation, anti-inflammation, avoiding microthrombosis, regulating immune function, inhibiting tumor cell growth. But the role of Hyperin on gastric cancer is unrevealed. Considering the essential role of Hyperin, Hyperin function in gastric cancer is necessary to explore. Aim To identify the function of Hyperin in gastric cancer. Methods The role of Hyperin on gastric cell progression was detected in our research. Proliferation, migration, and invasion ability were assessed by the CCK-8, colony formation, cell-cycle assay, wound healing, Transwell migration and invasion assays. TUNEL assay and flow cytometry showed the results of the apoptosis level. Further, caspase-3, -9 activity and apoptosis-associated protein were assessed by the Caspase activity kit and Western blot. Wnt/β-catenin signal pathway activity was appraised by TOP/FOP luciferase activity. Immunohistochemical staining was performed to detect the role of Hyperin on tumor growth in vivo. Results Functional experiments showed that Hyperin inhibited proliferation, migration, and invasion and induced apoptosis in gastric cancer cells. Meanwhile, Hyperin prevented tumor growth by suppressing Wnt/β-catenin signal pathway. Conclusion The present study revealed that Hyperin suppressed gastric cancer progression by controlling Wnt/β-catenin signal pathway, which provided a novel therapy in gastric cancer.
Collapse
Affiliation(s)
- Mao-Hua Ping
- Department of Rehabilitation Medicine, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province 430050, People 's Republic of China
| |
Collapse
|
22
|
Poodineh J, Sirati-Sabet M, Rajabibazl M, Mohammadi-Yeganeh S. MiR-130a-3p blocks Wnt signaling cascade in the triple-negative breast cancer by targeting the key players at multiple points. Heliyon 2020; 6:e05434. [PMID: 33225091 PMCID: PMC7662874 DOI: 10.1016/j.heliyon.2020.e05434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Aberrant Wnt signaling cascade is a hallmark of the triple-negative breast cancer (TNBC) that is linked with the increased proliferation, invasion, and poor overall survival. many genes are post-transcriptionally regulated by microRNAs (miRNAs) therefore; it is indisputable that the dysregulation of the miRNAs is an explanation for the aberrant signaling cascades. Thus, the present study was conducted to find the putative miRNA targeting the key players of Wnt/β -catenin cascade in the TNBC. METHODS The miR-130a-3p was found as a potential regulator of the Wnt signaling cascade by applying several bioinformatic algorithms. Quantitative real-time PCR (qRT-PCR) was used to analyze the expression levels of miR-130a-3p and Wnt cascade genes in the TNBC cells. Afterward, TNBC cells were transiently transfected with the miR-130a-3p to investigate its effects on the expression of Wnt cascade genes. Subsequently, MTT, soft agar colony formation, scratch, transwell cell migration, and transwell cell invasion assays were used to determine the behavior of the TNBC cells in response to miR-130a-3p restoration. RESULTS Results of the qRT-PCR showed downregulation of miR-130a-3p and upregulation of the Wnt cascade genes in the TNBC cells compared to the normal cells. Transient overexpression of miR-130a-3p decreased the expression levels of Wnt cascade genes significantly in the TNBC cells. Moreover, following the miR-130a-3p overexpression, the proliferation, anchorage-independent growth, and migration of the TNBC cells were reduced. CONCLUSION Overall, our findings provided an evidence for the significant role of miR-130a-3p in the regulation of Wnt/β-catenin cascade, and also introduced the miR-130a-3p as a new therapeutic target for the patients with TNBC.
Collapse
Affiliation(s)
- Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Jiang P, Yang X, Li Y, Chen J. miRNA-216 knockdown has effects to suppress osteosarcoma via stimulating PTEN. Food Sci Nutr 2020; 8:4708-4716. [PMID: 32994932 PMCID: PMC7500758 DOI: 10.1002/fsn3.1587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to explain the effects and mechanism of miRNA-216 in osteosarcoma. We firstly evaluated the PTEN expression in 30 pairs of tumor and adjacent tissues which were from the 30 osteosarcoma patients. In the following cell experiments, we measured the cell proliferation, cell cycle, cell invasion, and migration abilities of NC (normal control) group, BL (blank) group, siRNA (miRNA-216 inhibitor) group, and siRNA+PTEN inhibitor group. Furthermore, we measured the relative protein expression of difference groups by WB to explain the mechanism of miRNA-216 in osteosarcoma. The PTEN was confirmed the target gene of miRNA-216 by double luciferase target test. In conclusion, miRNA-216 was an oncogene in osteosarcoma. miRNA-216 knockdown had effects to suppress cancer cell proliferation, invasion and migration and improve cell apoptosis by keeping in G1 phase via PTEN.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Yang
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Yuanli Li
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Juan Chen
- Department of Orthopaedics Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
24
|
ÖRENLİLİ YAYLAGÜL E, ÜLGER C. The effect of baicalein on Wnt/β-catenin pathway and miR-25 expression in Saos-2 osteosarcoma cell line. Turk J Med Sci 2020; 50:1168-1179. [PMID: 32283909 PMCID: PMC7379426 DOI: 10.3906/sag-2001-161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background/aim Osteosarcoma is the most common primary bone malignancy that occurs frequently in children and adolescents. Baicalein, a flavonoid that has attracted great attention in recent years with its strong antitumor activity, shows a wide range of biological and pharmaceutical effects.MicroRNAs have been found to be involved in many critical processes in cancers. This study aimed to investigate the effect of baicalein and miR-25 on Wnt/β-catenin signaling pathway of osteosarcoma cell line Saos-2. Materials and methods Cell viability was assessed, and qRT-PCR and Western blot were performed to study the effects of baicalein on expression of Wnt/β-catenin signaling pathway-realted genes (β-catenin, GSK-3β, and Axin2) of Saos-2 cells. Results Our results indicated that baicalein can inhibit the proliferation (IC50 value 35 μM), regulate Wnt/β-catenin pathway and also increase miR-25 expression of Saos-2. Baicalein and also miR-25 decreased the expression of β-catenin and Axin2, while increasing the expression of GSK-3β. Down regulation of miR-25 decreased the expression of GSK-3β, while β-catenin and Axin2 expression increased. Conclusion These findings demonstrate that baicalein may target genes related to the Wnt/β-catenin pathway by regulating miR-25 expression and may be a potential Wnt/β-catenin pathway inhibitor for osteosarcoma therapy.
Collapse
Affiliation(s)
- Esra ÖRENLİLİ YAYLAGÜL
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Aydın Adnan Menderes University, AydınTurkey
| | - Celal ÜLGER
- Department of Biology, Faculty of Arts and Science, Aydın Adnan Menderes University, AydınTurkey
| |
Collapse
|
25
|
Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 2020; 72:46-64. [PMID: 32497683 DOI: 10.1016/j.semcancer.2020.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation. Aberrant regulation of gene expression by miRNAs is frequently observed in cancer. Overexpression of various 'oncomiRs' and silencing of tumor suppressor miRNAs are associated with various types of human cancers, although overall downregulation of miRNA expression is reported as a hallmark of cancer. Modulations of the total pool of cellular miRNA by alteration in genetic and epigenetic factors associated with the biogenesis of miRNA machinery. It also depends on the availability of cellular miRNAs from its store in the organelles which affect tumor development and cancer progression. Here, we have dissected the roles and pathways of various miRNAs during normal cellular and molecular functions as well as during breast cancer progression. Recent research works and prevailing views implicate that there are two major types of miRNAs; (i) intracellular miRNAs and (ii) extracellular miRNAs. Concept, that the functions of intracellular miRNAs are driven by cellular organelles in mammalian cells. Extracellular miRNAs function in cell-cell communication in extracellular spaces and distance cells through circulation. A detailed understanding of organelle driven miRNA function and the precise role of extracellular miRNAs, pre- and post-therapeutic implications of miRNAs in this scenario would open several avenues for further understanding of miRNA function and can be better exploited for the treatment of breast cancers.
Collapse
|
26
|
Role of Wnt/ β-Catenin Signaling in the Chemoresistance Modulation of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9390878. [PMID: 32258160 PMCID: PMC7109575 DOI: 10.1155/2020/9390878] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality worldwide. To date, chemotherapy plays an important role in the treatment of CRC patients. Multidrug resistance (MDR) is one of the major hurdles in chemotherapy for CRC, and the underlying mechanisms need to be explored. Studies have demonstrated that Wnt/β-catenin signaling plays a critical role in oncogenesis and tumor development, and its function in inhibiting apoptosis could facilitate tumor chemoresistance. Recent investigations have also suggested the regulatory effects of the Wnt/β-catenin signaling pathway in response to chemotherapeutic agents in CRC. Here, we particularly focus on reviewing the evidences suggesting the mechanisms of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer.
Collapse
|
27
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
28
|
Jiang N, Zou C, Zhu Y, Luo Y, Chen L, Lei Y, Tang K, Sun Y, Zhang W, Li S, He Q, Zhou J, Chen Y, Luo J, Jiang W, Ke Z. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Am J Cancer Res 2020; 10:2553-2570. [PMID: 32194819 PMCID: PMC7052895 DOI: 10.7150/thno.41120] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Cancer stem cells (CSCs) are considered to be essential for tumorigenesis, recurrence, and metastasis and therefore serve as a biomarker for tumor progression in diverse cancers. Recent studies have illustrated that specific miRNAs exhibit novel therapeutic potential by controlling CSC properties. miR-1275 is upregulated in lung adenocarcinoma (LUAD) and enhances its stemness. However, the underlying mechanisms have not been elucidated. Methods: miRNA expression microarray of LUAD and adjacent nontumor tissues was used to identify miRNAs involved in LUAD malignant progression. miR-1275 expression level was determined using quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH), and its correlation with clinicopathological characteristics was analyzed in LUAD specimens. The upstream regulator of miR-1275 was validated by chromatin immunoprecipitation (ChIP). The biological functions and underlying mechanisms of miR-1275 were investigated both in vitro and in vivo. Results: MiR-1275 was highly upregulated in lung cancer cell lines and LUAD tissues. Overexpression of miR-1275 in lung cancer patients was associated with shorter overall- and recurrence-free-survival. Proto-oncogene HIF-1ɑ was identified as the transcription mediator of miR-1275. Activation of Wnt/β-catenin and Notch signaling by miR-1275 was found to enhance the stemness of LUAD cells, while antagonizing miR-1275 or suppressing Wnt/β-catenin and Notch pathways potently reversed miR-1275-induced pathway co-activation and stemness. Enhanced stemness dramatically promoted tumorigenicity, recurrence, and metastasis. miR-1275 directly targeted multiple antagonists of Wnt/β-catenin and Notch pathways, including DKK3, SFRP1, GSK3β, RUNX3, and NUMB, respectively, which resulted in signaling activation. Conclusions: Our findings identified miR-1275 as a potential oncogene in LUAD that exerts its tumorigenic effect through co-activating Wnt/β-catenin and Notch signaling pathways. Thus, HIF-1ɑ-regulated miR-1275 might be a potential therapeutic target for LUAD.
Collapse
|
29
|
Medlej A, Mohammad Soltani B, Javad Mowla S, Hosseini S, Baharvand H. A novel miRNA located in the GATA4 gene regulates the expression of IGF-1R and AKT1/2 genes and controls cell proliferation. J Cell Biochem 2020; 121:3438-3450. [PMID: 31898360 DOI: 10.1002/jcb.29617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
GATA4 gene is a zinc-finger transcription factor known to be involved in cardiogenesis and the progression of different cancer types. Its diverse functions might be attributed to noncoding RNAs that could be embedded within its sequence. Here, we predicted a stable RNA stem-loop structure that is located in the second intron of the GATA4 gene. Available microRNA (miRNA) sequencing data and molecular genetics tools confirmed the identity of a mature miRNA (named GATA4-miR1) originating from the predicted stem-loop. In silico analysis predicted IGF-1R and AKT1/2 genes as potential targets for GATA4-miR1. Indeed, direct interactions between GATA4-miR1 and 3' untranslated regions sequences of IGF-1R and AKT1/2 genes were documented by dual luciferase assay. In addition, overexpression of GATA4-miR1 in SW480 cells resulted in the reduction of IGF-1R and AKT1/2 genes' expression, detected by reverse transcription quantitative (RT-q) polymerase chain reaction and Western blot analysis. This observation was consistent with a deduced negative correlation between the expression patterns of GATA4-miR1 and IGF-1R genes during cardiomyocyte differentiation. Moreover, overexpressing GATA4-miR1 in SW480 and PC3 cells resulted in a significant increase of the sub-G1 population in both cell lines, as detected by propidium iodide flow cytometry. Further analysis by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay indicated a reduction in the survival and proliferation rates of SW480 cells overexpressing GATA4-miR1, but no impact was observed on apoptosis progression, as indicated by Annexin-V flow cytometry. Overall, GATA4-miR1 represents a promising candidate for further research in the fields of cancer and cardiovascular therapeutics.
Collapse
Affiliation(s)
- Abdallah Medlej
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
30
|
Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches. JOURNAL OF ONCOLOGY 2019; 2019:4878547. [PMID: 32082376 PMCID: PMC7012245 DOI: 10.1155/2019/4878547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12–15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDHWT; n = 38) and IDH-mutant (IDHMUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDHWT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDHWT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDHMUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDHMUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.
Collapse
|
31
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Sun QX, Wang RR, Liu N, Liu C. Dysregulation of miR-204-3p Driven by the Viability and Motility of Retinoblastoma via Wnt/β-catenin Pathway In Vitro and In Vivo. Pathol Oncol Res 2019; 26:1549-1558. [PMID: 31482398 DOI: 10.1007/s12253-019-00722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Retinoblastoma (RB) is a malignant intraocular tumor that frequently occurs in infants and toddlers. Although the most of RB patients in the developed countries could survival from this cancer, the patients in undeveloped areas are still suffering. The human retinal pigment epithelial cell line ARPE-19 and human retinoblastoma (RB) cell lines HXO-RB44, Y79, and WERI-Rb1 were cultured. The mRNA levels of BANCR and miR-204-3p in these cell lines were measured by qRT-PCR. After transfection with sh-BANCR or treatment with miR-204-3p inhibitor in Y79 cells, the cell proliferation rate, growth, invasion, migration, apoptosis and Wnt/β-catenin signaling pathway activity were measured. The regular Y79 and Y79 cells stably expressed sh-BANCR were injected subcutaneously into nude mice, respectively. The volumes and pathohistological futures of tumors were compared. The biochemical features similar to the cell culture were detected and compered. The mRNA measurements showed that BANCR negatively modulate miR-204-3p expression via directly integration with it. Besides, miR-204-3p and Wnt/β-catenin signalling pathway were found to participate in the oncogenic effects of BANCR on RB cell line by Hoechst staining, cell Counting Kit-8 (CCK-8) assay, wound healing assay, transwell assay, and Western blot analysis in vitro. In addition, an in vivo tumorigenesis experiment in nude mice injected with Y79 cells stably expressed sh-BANCR conformed in the effects of BANCR on RB. Taken together, the knockdown of BANCR inhibited cell proliferation, apoptosis, invasion, and migration in RB via targeting miR-204-3p, the mechanism may involve inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qing-Xiu Sun
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Rong-Rong Wang
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Na Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Chao Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China. .,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
33
|
Xi J, Sun Y, Zhang M, Fa Z, Wan Y, Min Z, Xu H, Xu C, Tang J. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp Cell Res 2019; 381:1-9. [DOI: 10.1016/j.yexcr.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
|
34
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
35
|
Di Mauro V, Crasto S, Colombo FS, Di Pasquale E, Catalucci D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci Rep 2019; 9:9320. [PMID: 31249372 PMCID: PMC6597717 DOI: 10.1038/s41598-019-45818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
MiR-133a is a muscle-enriched miRNA, which plays a key role for proper skeletal and cardiac muscle function via regulation of transduction cascades, including the Wnt signalling. MiR-133a modulates its targets via canonical mRNA repression, a process that has been largely demonstrated to occur within the cytoplasm. However, recent evidence has shown that miRNAs play additional roles in other sub-cellular compartments, such as nuclei. Here, we show that miR-133a translocates to the nucleus of cardiac cells following inactivation of the canonical Wnt pathway. The nuclear miR-133a/AGO2 complex binds to a complementary miR-133a target site within the promoter of the de novo DNA methyltransferase 3B (Dnmt3b) gene, leading to its transcriptional repression, which is mediated by DNMT3B itself. Altogether, these data show an unconventional role of miR-133a that upon its relocalization to the nucleus is responsible for epigenetic repression of its target gene Dnmt3b via a DNMT3B self-regulatory negative feedback loop.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- University of Milan Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Silvia Crasto
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Daniele Catalucci
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy.
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
36
|
Munguía-Reyes A, Balderas-Martínez YI, Becerril C, Checa M, Ramírez R, Ortiz B, Meléndez-Zajgla J, Pardo A, Selman M. R-Spondin-2 Is Upregulated in Idiopathic Pulmonary Fibrosis and Affects Fibroblast Behavior. Am J Respir Cell Mol Biol 2019; 59:65-76. [PMID: 29345973 DOI: 10.1165/rcmb.2017-0115oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the expansion of the myofibroblast population, excessive extracellular matrix accumulation, and destruction of the lung parenchyma. The R-spondin family (RSPO) comprises a group of proteins essential for development. Among them, RSPO2 is expressed primarily in the lungs, and its mutations cause severe defects in the respiratory tract. Interestingly, RSPO2 participates in the canonical Wingless/int1 pathway, a critical route in the pathogenesis of IPF. Thus, the aim of this study was to examine the expression and putative role of RSPO2 in this disease. We found that RSPO2 and its receptor leucine-rich G protein-coupled receptor 6 were upregulated in IPF lungs, where they localized primarily in fibroblasts and epithelial cells. Stimulation of IPF and normal lung fibroblasts with recombinant human RSPO2 resulted in the deregulation of numerous genes, although the transcriptional response was essentially distinct. In IPF fibroblasts, RSPO2 stimulation induced the up- or downregulation of several genes involved in the Wingless/int1 pathway (mainly from noncanonical signaling). In both normal and IPF fibroblasts, RSPO2 modifies the expression of genes implicated in several pathways, including the cell cycle and apoptosis. In accordance with gene expression, the stimulation of normal and IPF fibroblasts with RSPO2 significantly reduced cell proliferation and induced cell death. RSPO2 also inhibited collagen production and increased the expression of matrix metalloproteinase 1. Silencing RSPO2 with shRNA induced the opposite effects. Our findings demonstrate, for the first time to our knowledge, that RSPO2 is upregulated in IPF, where it appears to have an antifibrotic role.
Collapse
Affiliation(s)
- Adrián Munguía-Reyes
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Yalbi I Balderas-Martínez
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico.,2 Cátedra Consejo Nacional de Ciencia y Tecnología (CONACyT)-INER, Mexico City, Mexico
| | - Carina Becerril
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Marco Checa
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Remedios Ramírez
- 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Blanca Ortiz
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | | | - Annie Pardo
- 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Moisés Selman
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
37
|
TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res 2019; 378:41-50. [PMID: 30844387 DOI: 10.1016/j.yexcr.2019.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023]
Abstract
M2-polarized tumor-associated macrophages (M2-TAMs) infiltrating the tumor microenvironment contribute to hepatocellular carcinoma (HCC) progression. It was reported that cancer cells undergoing EMT will acquire stemness characteristics. Here, the HCC SMMC-7721 cell line was co-cultured with M2-TAMs polarized from THP-1 cells in vitro. In in vivo studies, we used nude mice subcutaneous tumor model to test whether the growth of the tumor was affected by M2-TAMs. Subsequently, EMT, stemness and Wnt/β-catenin pathway related markers were detected in cells and subcutaneous tumor tissues. TNF-α was also assessed in both the co-culture system supernatants and in nude mice serum. We found that SMMC-7721 underwent EMT and acquired stemness after co-culture with M2-TAMs, and resulted in larger tumor size following subcutaneous injection of SMMC-7721 suspended in M2-TAMs supernatants compared with SMMC-7721 alone. Enzyme linked immunosorbent assay showed that TNF-α expression was elevated in supernatants of M2-TAMs and positively correlated with tumor size in the serum of nude mice. Furthermore, we found that the Wnt/β-catenin pathway was a downstream target of TNF-α and that the Wnt/β-catenin inhibitor ICG-001 partially reversed EMT and attenuated cancer stemness. Our results indicate that TNF-α derived from M2-TAMs promote EMT and cancer stemness cells via the Wnt/β-catenin pathway.
Collapse
|
38
|
Essaadi A, Nollet M, Moyon A, Stalin J, Simoncini S, Balasse L, Bertaud A, Bachelier R, Leroyer AS, Sarlon G, Guillet B, Dignat-George F, Bardin N, Blot-Chabaud M. Stem cell properties of peripheral blood endothelial progenitors are stimulated by soluble CD146 via miR-21: potential use in autologous cell therapy. Sci Rep 2018; 8:9387. [PMID: 29925894 PMCID: PMC6010456 DOI: 10.1038/s41598-018-27715-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapies constitute a real hope for the treatment of ischaemic diseases. One of the sources of endothelial progenitors for autologous cell therapy is Endothelial Colony Forming Cells (ECFC) that can be isolated from peripheral blood. However, their use is limited by their low number in the bloodstream and the loss of their stem cell phenotype associated with the acquisition of a senescent phenotype in culture. We hypothesized that adding soluble CD146, a novel endothelial growth factor with angiogenic properties, during the isolation and growth procedures could improve their number and therapeutic potential. Soluble CD146 increased the number of isolated peripheral blood ECFC colonies and lowered their onset time. It prevented cellular senescence, induced a partial mesenchymal phenotype and maintained a stem cell phenotype by stimulating the expression of embryonic transcription factors. These different effects were mediated through the induction of mature miR-21. When injected in an animal model of hindlimb ischaemia, sCD146-primed ECFC isolated from 40 ml of blood from patients with peripheral arterial disease were able to generate new blood vessels and restore blood flow. Treatment with sCD146 could thus constitute a promising strategy to improve the use of autologous cells for the treatment of ischaemic diseases.
Collapse
Affiliation(s)
- Amel Essaadi
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Marie Nollet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Anaïs Moyon
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Jimmy Stalin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | | - Laure Balasse
- CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | | | | | - Gabrielle Sarlon
- Service of Vascular Surgery, La Timone Hospital, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | |
Collapse
|
39
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
40
|
Peng C, Wang YL. Editorial: MicroRNAs as New Players in Endocrinology. Front Endocrinol (Lausanne) 2018; 9:459. [PMID: 30174649 PMCID: PMC6107694 DOI: 10.3389/fendo.2018.00459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chun Peng
- Department of Biology and Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Zwamborn RA, Snijders C, An N, Thomson A, Rutten BP, de Nijs L. Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:129-157. [DOI: 10.1016/bs.pmbts.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Slattery ML, Mullany LE, Sakoda LC, Samowitz WS, Wolff RK, Stevens JR, Herrick JS. Expression of Wnt-signaling pathway genes and their associations with miRNAs in colorectal cancer. Oncotarget 2017; 9:6075-6085. [PMID: 29464056 PMCID: PMC5814196 DOI: 10.18632/oncotarget.23636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
The Wnt-signaling pathway functions in regulating cell growth and thus is involved in the carcinogenic process of several cancers, including colorectal cancer. We tested the hypothesis that multiple genes in this signaling pathway are dysregulated and that miRNAs are associated with these dysregulated genes. We used data from 217 colorectal cancer (CRC) cases to evaluate differences in Wnt-signaling pathway gene expression between paired CRC and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most strongly associated with CRC (fold change (FC) of >1.5 or <0.67) and that were statistically significant after adjustment for multiple comparisons. Of the 138 Wnt-signaling pathway genes examined, 27 were significantly down-regulated (FC<0.67) and 32 genes were significantly up-regulated (FC>1.50) after adjusting for multiple comparisons. Thirteen of the 66 Wnt-signaling genes that were differentially expressed in CRC tumors were associated with differential expression of miRNAs. A total of 93 miRNA:mRNA associations were detected for these 13 genes. Of these 93 associations, 36 miRNA seed-region matches were observed, suggesting that miRNAs have both direct and indirect effects on Wnt-signaling pathway genes. In summary, our data supports the hypothesis that the Wnt-signaling pathway is dysregulated in CRC and suggest that miRNAs may importantly influence that dysregulation.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
43
|
Fang C, Qiu S, Sun F, Li W, Wang Z, Yue B, Wu X, Yan D. Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Cancer Lett 2017; 410:50-62. [DOI: 10.1016/j.canlet.2017.09.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022]
|
44
|
Aili T, Paizula X, Ayoufu A. miR‑455‑5p promotes cell invasion and migration in breast cancer. Mol Med Rep 2017; 17:1825-1832. [PMID: 29257232 DOI: 10.3892/mmr.2017.8101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑455‑5p has been identified as a biomarker for various types of cancer and may therefore be involved in the regulation of cancer development and progression. However, the specific role and function of miR‑455‑5p in breast cancer remains unclear. The present study explored the expression levels and function of miR‑455‑5p in breast cancer. The results from reverse transcription‑quantitative polymerase chain reaction analysis revealed that miR‑455‑5p was significantly upregulated in breast cancer. Clinically, increased expression of miR‑455‑5p predicted a poor survival rate and miR‑455‑5p was identified as one of the independent prognostic factors for breast cancer patients. Furthermore, results from wound healing and Transwell assays revealed that miR‑455‑5p accelerated invasiveness and migration capabilities of breast cancer cells. In addition, programmed cell death 4 was identified as a downstream target of miR‑455‑5p and its expression was observed to be negatively regulated by miR‑455‑5p. Overall, miR‑455‑5p may function as an oncogene in breast cancer, and may therefore be used as a prognostic marker for breast cancer patients.
Collapse
Affiliation(s)
- Tuerxunjiang Aili
- Department of General Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuelaiti Paizula
- Department of Mammary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Aisikeer Ayoufu
- Department of Mammary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
45
|
Xun J, Wang D, Shen L, Gong J, Gao R, Du L, Chang A, Song X, Xiang R, Tan X. JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity. Oncotarget 2017; 8:21918-21929. [PMID: 28423536 PMCID: PMC5400634 DOI: 10.18632/oncotarget.15747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.
Collapse
Affiliation(s)
- Jing Xun
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Long Shen
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Junbo Gong
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency in Tianjin University, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ruifang Gao
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Lingfang Du
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Antao Chang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Xiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
47
|
Abstract
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis.
Collapse
|
48
|
Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer 2017; 16:70. [PMID: 28356111 PMCID: PMC5372323 DOI: 10.1186/s12943-017-0629-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Metastasis is a major cause of death in human colorectal cancer patients. However, the contribution of chemokines in the tumor microenvironment to tumor metastasis is not fully understood. Methods Herein, we examinined several chemokines in colorectal cancer patients using chemokine ELISA array. Immunohistochemistry was used to detect expression of CXCL5 in colorectal cancer patients tissues. Human HCT116 and SW480 cell lines stably transfected with CXCL5, shCXCL5 and shCXCR2 lentivirus plasmids were used in our in vitro study. Immunoblot, immunofluorescence and transwell assay were used to examine the molecular biology and morphological changes in these cells. In addition, we used nude mice to detect the influence of CXCL5 on tumor metastasis in vivo. Results We found that CXCL5 was overexpressed in tumor tissues and associated with advanced tumor stage as well as poor prognosis in colorectal cancer patients. We also demonstrated that CXCL5 was primarily expressed in the tumor cell cytoplasm and cell membranes, which may indicate that the CXCL5 was predominantly produced by cancer epithelial cells instead of fibroblasts in the tumor mesenchyme. Additionally, overexpression of CXCL5 enhanced the migration and invasion of colorectal cancer cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK/Elk-1/Snail pathway and the AKT/GSK3β/β-catenin pathway in a CXCR2-dependent manner. The silencing of Snail and β-catenin attenuated CXCL5/CXCR2-enhanced cell migration and invasion in vitro. The elevated expression of CXCL5 can also potentiate the metastasis of colorectal cancer cells to the liver in vivo in nude mice intrasplenic injection model. Conclusion In conclusion, our findings support CXCL5 as a promoter of colorectal cancer metastasis and a predictor of poor clinical outcomes in colorectal cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0629-4) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Li S, Jin Z, Lu X. MicroRNA-192 suppresses cell proliferation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes by downregulating caveolin 1. Mol Cell Biochem 2017; 432:123-130. [PMID: 28321538 DOI: 10.1007/s11010-017-3003-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/04/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study was conducted to explore the role of microRNA (miR)-192 in the regulation of the biology of RA-FLSs. The expression of miR-192 in RA and healthy synovial tissues was measured. The effects of overexpression of miR-192 on RA-FLS proliferation and apoptosis were investigated. Luciferase reporter assay and Western blot analysis were performed to identify direct target genes of miR-192. RA synovial tissues had significantly lower levels of miR-192 than healthy controls (P = 0.004). Moreover, miR-192 levels were 2.9-fold lower in RA-FLSs relative to normal human FLSs (P < 0.05). Ectopic expression of miR-192 significantly inhibited the proliferation and caused a cell cycle arrest at the G0/G1 phase in RA-FLSs. Moreover, miR-192 overexpression triggered apoptosis, which was accompanied by an increase in caspase-3 activity and Bax/Bcl-2 ratio. Caveolin 1 (CAV1) was identified to be a direct target of miR-192. Overexpression of miR-192 led to a reduction of endogenous CAV1 in RA-FLSs. Silencing of CAV1 significantly decreased cell proliferation and promoted apoptosis in RA-FLSs. Rescue experiments with a miR-192-resistant variant of CAV1 showed that enforced expression of CAV1 restored cell proliferation and attenuated apoptosis in miR-192-overexpressing RA-FLSs. In conclusion, miR-192 is downregulated in RA synovial tissues and restoration of its expression elicits growth-suppressive effects on RA-FLSs by targeting CAV1. The miR-192/CAV1 pathway may represent a novel target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Supin Li
- Department of Rheumatology, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Zhenmu Jin
- Department of Rheumatology, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Xiaobing Lu
- Department of Orthopedic Surgery, Yanghu Branch, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 68, Gehu Zhong Road, Changzhou, 213164, China.
| |
Collapse
|
50
|
Ahmed M, Chaudhari K, Babaei-Jadidi R, Dekker LV, Shams Nateri A. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells 2017; 35:839-850. [DOI: 10.1002/stem.2579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mehreen Ahmed
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
| | | | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
- Tumor & Vascular Biology Laboratories; Cancer Biology, Division of Cancer and Stem Cells, School of Medicine; Nottingham United Kingdom
| | - Lodewijk V. Dekker
- Division of Medicinal Chemistry and Structural Biology, School of Pharmacy; Centre for Biomolecular Science, University of Nottingham; Nottingham United Kingdom
| | | |
Collapse
|