1
|
Mou Y, Yang S, Yu J, Chen X, Zhu Y, Wang C, Wan X, Yuan K, Huang X, Jin X. Histone methylation regulates neutrophil extracellular traps to attenuate corneal neovascularization. Int Immunopharmacol 2024; 143:113525. [PMID: 39500081 DOI: 10.1016/j.intimp.2024.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024]
Abstract
Corneal neovascularization (CNV) severely affects corneal transparency and disrupts the homeostasis of the ocular environment. However, the underlying mechanism of CNV remains unclear. In this study, we investigated the role of neutrophil extracellular traps (NETs) played in CNV and how histone methylation regulates the characterization of NETs. We used an alkali-burn-induced mice CNV model and human primary neutrophils to observe the involvement of NETs during CNV and change in its histone methylation. Transcriptomic analysis was performed to demonstrate the involvement of NETs during corneal alkali burn. We used the histone demethylase inhibitor JIB-04 to regulate the histone methylation of NETs and explored the related effects on CNV formation. NETs were obviously involved in corneal alkali burn and could be stimulated by NaOH in vitro. Isolated NETs aggravated CNV and promoted migration, proliferation and tube formation of vascular endothelial cells, while disruption of NETs significantly ameliorated angiogenesis and inflammation in vivo and in vitro. Mechanistically, histone methylation of NETs was inhibited by alkali burn and restored by JIB-04. Furthermore, we discovered that JIB-04 reduced CNV and NETs formation by regulating the NF-κB/ERK/ROS pathway. In conclusion, this study claims a novel role for histone methylation in regulating NETs formation and thereby affecting angiogenesis, which indicates a novel therapeutic target for CNV and other neovascularization-related diseases.
Collapse
Affiliation(s)
- Yujie Mou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Shuo Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Jiayun Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xueping Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Yirui Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Chunyang Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xiaojie Wan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Kelan Yuan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China.
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China.
| |
Collapse
|
2
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2024:e202400682. [PMID: 39498961 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-7346, Iran
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
3
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Gao J, Wang Y, Han R, Li J, Hao P, Li J, Chen X, Jiang L, Wang L, Ma Y, Chen L, Li X. Elevated KDM4D Expression in Pterygium: Impact and Potential Inhibition by Lycium Barbarum Polysaccharide. J Ocul Pharmacol Ther 2024; 40:181-188. [PMID: 38386983 DOI: 10.1089/jop.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Purpose: This study aimed to explore the effects of elevated KDM4D expression and potential therapeutic effects of Lycium barbarum polysaccharide (LBP) on pterygium. Methods: The expression levels of KDM4D in the primary pterygium (n = 29) and normal conjunctiva (n = 14) were detected by immunohistochemistry. The effects of KDM4D on pterygium fibroblasts were detected by the CCK-8 assay, liquid chromatography-mass spectrometry assay, flow cytometry, and scratch wound healing assay. The relative expression of KDM4D in pterygium fibroblasts stimulated by interleukin (IL)-1β, IL-6, IL-8, and LBP was detected by quantitative real-time PCR and Western blot. The effects of LBP on pterygium fibroblasts were detected using flow cytometry and scratch wound healing assays. Results: The expression level of KDM4D in pterygium was higher than that in normal conjunctiva. KDM4D increased the cell viability of pterygium fibroblasts. The differentially expressed genes identified in the LM-MS assay enriched in "actin filament organization" and "apoptosis." KDM4D promoted migration and inhibited apoptosis of pterygium fibroblasts in vitro. Inflammatory cytokines, including IL-1β, IL-6, and IL-8, enhanced the expression of KDM4D in pterygium fibroblasts. LBP inhibited the expression of KDM4D in pterygium fibroblasts and decreased their cell viability. Moreover, LBP attenuated the KDM4D effects on migration and apoptosis of pterygium fibroblasts. Conclusions: Elevated KDM4D expression is a risk factor for pterygium formation. LBP inhibits the expression of KDM4D in pterygium fibroblasts and may be a potential drug for delaying pterygium development.
Collapse
Affiliation(s)
- Juan Gao
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Yuchuan Wang
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Ruifang Han
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Jun Li
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Xi Chen
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Li Jiang
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Liming Wang
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| | - Yunqing Ma
- Medical School, Nankai University, Tianjin, China
| | | | - Xuan Li
- Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Tianjin Eye Institute, Tianjin, China
| |
Collapse
|
5
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
6
|
Gu R, Kim TD, Jiang H, Shin S, Oh S, Janknecht R. Methylation of the epigenetic JMJD2D protein by SET7/9 promotes prostate tumorigenesis. Front Oncol 2023; 13:1295613. [PMID: 38045004 PMCID: PMC10690936 DOI: 10.3389/fonc.2023.1295613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
How the function of the JMJD2D epigenetic regulator is regulated or whether it plays a role in prostate cancer has remained elusive. We found that JMJD2D was overexpressed in prostate tumors, stimulated prostate cancer cell growth and became methylated by SET7/9 on K427. Mutation of this lysine residue in JMJD2D reduced the ability of DU145 prostate cancer cells to grow, invade and form tumors and elicited extensive transcriptomic changes. This included downregulation of CBLC, a ubiquitin ligase gene with hitherto unknown functions in prostate cancer, and upregulation of PLAGL1, a transcription factor with reported tumor suppressive characteristics in the prostate. Bioinformatic analyses indicated that CBLC expression was elevated in prostate tumors. Further, downregulation of CBLC largely phenocopied the effects of the K427 mutation on DU145 cells. In sum, these data have unveiled a novel mode of regulation of JMJD2D through lysine methylation, illustrated how this can affect oncogenic properties by influencing expression of the CBLC gene, and established a pro-tumorigenic role for CBLC in the prostate. A corollary is that JMJD2D and CBLC inhibitors could have therapeutic benefits in the treatment of prostate and possibly other cancers.
Collapse
Affiliation(s)
- Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hanlin Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Qiu C, Feng YD, Yang X. MicroRNA-409-5p Inhibits GIST Tumorigenesis and Improves Imatinib Resistance by Targeting KDM4D Expression. Curr Med Sci 2023; 43:935-946. [PMID: 37828372 DOI: 10.1007/s11596-023-2715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/11/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Gastrointestinal stromal tumors (GISTs) can rapidly proliferate through angiogenesis. Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis. This study aimed to explore the specific mechanism by which microRNA-409-5p (miR-409-5p) contributes to GIST. METHODS To identify genes potentially involved in the development and progression of GIST, the differences of miR-409-5p between tumors and adjacent tissues were first analyzed. Following this analysis, target genes were predicted. To further investigate the function of miRNA in GIST cells, two GIST cell lines (GIST-T1 and GIST882) were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA (negative control). Later, the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes. RESULTS In GISTs, there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues. It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β (HIF1β) and vascular endothelial growth factor A (VEGF-A). Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3'-UTR of Lysine-specific demethylase 4D (KDM4D) mRNA. Moreover, the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis. CONCLUSION This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.
Collapse
Affiliation(s)
- Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong-Dong Feng
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Yang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Biagioni A, Peri S, Versienti G, Fiorillo C, Becatti M, Magnelli L, Papucci L. Gastric Cancer Vascularization and the Contribution of Reactive Oxygen Species. Biomolecules 2023; 13:886. [PMID: 37371466 DOI: 10.3390/biom13060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Blood vessels are the most important way for cancer cells to survive and diffuse in the body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass progressively induces modifications in the microenvironment due to its uncontrolled growth, generating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration. In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis. Indeed, to reach new sources of oxygen and metabolites, highly aggressive cancer cells might produce a new abnormal network of vessels independently from endothelial cells, a process called vasculogenic mimicry. Even though many molecular markers and mechanisms, especially in gastric cancer, are still unclear, the formation of such intricate, leaky and abnormal vessel networks is closely associated with patients' poor prognosis, and therefore finding new pharmaceutical solutions to be applied along with canonical chemotherapies in order to control and normalize the formation of such networks is urgent.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
9
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Xia M, Wu Y, Zhu H, Duan W. Tanshinone I induces ferroptosis in gastric cancer cells via the KDM4D/p53 pathway. Hum Exp Toxicol 2023; 42:9603271231216963. [PMID: 37989263 DOI: 10.1177/09603271231216963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Tanshinone I (Tan I) is one of the bioactive components of Salvia miltiorrhiza. Whether it inhibits gastric cancer through ferroptosis has not been reported. This study aimed to confirm the effect of Tan I on ferroptosis in gastric cancer cells. METHODS AGS and HGC27 cells were treated with Tan I. First, oxidative stress-related parameters and the expression of ferroptosis-related proteins were examined. Combined with a ferroptosis inhibitor, Tan I was found to inhibit gastric cancer cells via the ferroptosis pathway. Finally, with bioinformatics analysis, the target protein of Tan I was identified. RESULTS Tan I significantly inhibited the expression level of GPX4. This molecule also increased ROS, MDA, and Fe2+ contents and decreased GSH enzyme activity. Therefore, we hypothesized that Tan I may inhibit gastric cancer cells by inducing ferroptosis. Western blotting results showed that Tan I inhibited the expression levels of the ferroptosis resistance-related proteins GPX4, SLC7A11, and FTH1, while the pro-ferroptosis-related proteins TFR1 and ACSL4 were significantly upregulated. A ferroptosis inhibitor effectively reversed these regulatory effects of Tan I in gastric cancer. With these data combined with the bioinformatics analysis, KDM4D was identified as a key regulatory target of Tan I. Mechanistically, Tan I induced positive regulation of ferroptosis resistance-related indicators by inhibiting KDM4D to upregulate p53 protein expression. Overexpression of KDM4D significantly reversed the effect of Tan I-induced ferroptosis resistance in gastric cancer cells. CONCLUSIONS Tan I induced ferroptosis inhibition in gastric cancer by regulating the KDM4D/p53 pathway.
Collapse
Affiliation(s)
- Minming Xia
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yifeng Wu
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Hui Zhu
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Wenbiao Duan
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
12
|
Papadakos SP, Tsagkaris C, Papadakis M, Papazoglou AS, Moysidis DV, Zografos CG, Theocharis S. Angiogenesis in gastrointestinal stromal tumors: From bench to bedside. World J Gastrointest Oncol 2022; 14:1469-1477. [PMID: 36160752 PMCID: PMC9412926 DOI: 10.4251/wjgo.v14.i8.1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are rare neoplasms with an estimated incidence from 0.78 to 1-1.5 patients per 100000. They most commonly occur in the elderly during the eighth decade of life affecting predominantly the stomach, but also the small intestine, the omentum, mesentery and rectosigmoid. The available treatments for GIST are associated with a significant rate of recurrent disease and adverse events. Thorough understanding of GIST’s pathophysiology and translation of this knowledge into novel regimens or drug repurposing is essential to counter this challenge. The present review summarizes the existing evidence about the role of angiogenesis in GIST’s development and progression and discusses its clinical underpinnings.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens 10679, Greece
| | | | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal 42283, Germany
| | - Andreas S Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Athens Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, University of Athens, Athens 11527, Greece
| |
Collapse
|
13
|
Histone Demethylase JMJD2D: A Novel Player in Colorectal and Hepatocellular Cancers. Cancers (Basel) 2022; 14:cancers14122841. [PMID: 35740507 PMCID: PMC9221006 DOI: 10.3390/cancers14122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Histone demethylase JMJD2D is a multifunctional epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, cell cycle regulation, and inflammation modulation. JMJD2D is also a well-established epigenetic facilitator in the progression of multiple malignant tumors, especially in colorectal cancer (CRC) and hepatocellular cancer (HCC). This review aims to summarize the mechanisms of JMJD2D in promoting CRC and HCC progression, which provides novel ideas for targeting JMJD2D in oncotherapy. JMJD2D promotes gene transcription by reducing H3K9 methylation and serves as a coactivator to enhance the activities of multiple carcinogenic pathways, including Wnt/β-catenin, Hedgehog, HIF1, JAK-STAT3, and Notch signaling; or acts as an antagonist of the tumor suppressor p53. Abstract Posttranslational modifications (PTMs) of histones are well-established contributors in a variety of biological functions, especially tumorigenesis. Histone demethylase JMJD2D (also known as KDM4D), a member of the JMJD2 subfamily, promotes gene transcription by antagonizing H3K9 methylation. JMJD2D is an epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, and cell cycle regulation. Recently, the oncogenic role of JMJD2D in colorectal cancer (CRC) and hepatocellular cancer (HCC) has been recognized. JMJD2D serves as a coactivator of β-catenin, Gli1/2, HIF1α, STAT3, IRF1, TCF4, and NICD or an antagonist of p53 to promote the progression of CRC and HCC. In this review, we summarize the molecular mechanisms of JMJD2D in promoting the progression of CRC and HCC as well as the constructive role of its targeting inhibitors in suppressing tumorigenesis and synergistically enhancing the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
|
14
|
Yao W, Wang J, Zhu L, Jia X, Xu L, Tian X, Hu S, Wu S, Wei L. Epigenetic Regulator KDM4D Restricts Tumorigenesis via Modulating SYVN1/HMGB1 Ubiquitination Axis in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:761346. [PMID: 34820329 PMCID: PMC8606580 DOI: 10.3389/fonc.2021.761346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Background Increasing researches have been reported that epigenetic alterations play critical roles in ESCC development. However, the role of the histone demethylase KDM4D in ESCC tumorigenesis is poorly investigated. This study aims to discover the underlying mechanisms between KDM4D and ESCC progression. Methods CCK-8 assays, clone formation assay and soft-agar assays were performed to assess cell proliferation. Transwell assay was utilized to assess cell migration efficiency, while sphere formation assay was used to evaluate the cell self-renewal ability. Bioinformatic analysis was conducted to identify prognostic factors and predict the potential E3 ubiquitin ligases. In vitro ubiquitination assay was conducted to confirm the regulations between SYVN1 and HMGB1. The mRNA levels or protein levels of genes were detected by real-time PCR and western blot analysis. In vivo tumor xenograft models were used to determine whether the HMGB1 inhibition affected the malignant features of ESCC cells. Result Epigenome screening and low-throughput validations highlighted that KDM4D is a tumor suppressor in ESCC. KDM4D expressed lowly in tumors that predicts poor prognosis. KDM4D deficiency significantly enhanced tumor growth, migration and stemness. Mechanistically, KDM4D transcriptionally activates SYVN1 expressions via H3K9me3 demethylation at the promoter region, thereby triggering the ubiquitin-dependent degradation of HMGB1. Low KDM4D depended on accumulated HMGB1 to drive ESCC progression and aggressiveness. Targeting HMGB1 (Glycyrrhizin) could remarkably suppress ESCC tumor growth in vitro and in vivo, especially in KDM4D-deficient cells. Conclusions We systematically identified KDM4D/SYVN1/HMGB1 axis in ESCC progression, proving novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Li Zhu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Lei Xu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xia Tian
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Shuai Hu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Sen Wu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
15
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
16
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Yan H, Zhu L, Zhang J, Lin Z. Histone demethylase KDM4D inhibition suppresses renal cancer progression and angiogenesis through JAG1 signaling. Cell Death Discov 2021; 7:284. [PMID: 34667158 PMCID: PMC8526739 DOI: 10.1038/s41420-021-00682-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Kidney cancer, especially clear cell renal cell carcinoma (ccRCC), is one of the representative genitourinary tumors. Investigation of underlying mechanisms of ccRCC development is crucial for patient management. Histone demethylase KDM4D has been reported to be responsible for development of a variety of cancers. However, the role of KDM4D in ccRCC progression is poorly understood. In our study, we performed immunohistochemistry analysis of tissue microarrays first, and results showed that high expression level of KDM4D is connected with advanced Fuhrman grade (p = 0.0118) and lower overall survival (p = 0.0020). Then, we revealed that KDM4D can prompt ccRCC development by interacting with genes related to vessel morphogenesis. Finally, we disclosed that KDM4D directly interacts with JAG1 promoter and advances tumor angiogenesis by upregulating VEGFR-3 and antagonizing notch signaling. The results of our study indicate that KDM4D would be a potential prognostic marker and therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Hao Yan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liangsong Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Renji hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zongming Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Fang Z, Liu Y, Zhang R, Chen Q, Wang T, Yang W, Fan Y, Yu C, Xiang R, Yang S. Discovery of a potent and selective inhibitor of histone lysine demethylase KDM4D. Eur J Med Chem 2021; 223:113662. [PMID: 34237635 DOI: 10.1016/j.ejmech.2021.113662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
Histone lysine demethylase 4D (KDM4D) plays an important role in the regulation of tumorigenesis, progression and drug resistance and has been considered a potential target for cancer treatment. However, there is still a lack of potent and selective KDM4D inhibitors. In this investigation, we report a new class of KDM4D inhibitors containing the 2-(aryl(pyrrolidine-1-yl)methyl)phenol scaffold, identified through AlphaLisa-based screening, structural optimization, and structure-activity relationship analyses. Among these inhibitors, 24s was the most potent, with an IC50 value of 0.023 ± 0.004 μM. This compound exhibited more than 1500-fold selectivity towards KDM4D versus KDM4A as well as other JMJD subfamily members, indicating good selectivity for KDM4D. Kinetic analysis indicated that 24s did not occupy the 2-oxoglutarate binding pocket. In an in vitro assay, 24s significantly suppressed the proliferation and migration of colorectal cancer (CRC) cells. Overall, this study has identified a good tool compound to explore the biological function of KDM4D and a good lead compound for drug discovery targeting KDM4D.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China
| | - Rong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China.
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China.
| |
Collapse
|
19
|
Ma YS, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Wang HM, Wang PY, Lin QL, Li W, Fu D. Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs. Am J Cancer Res 2021; 11:2386-2400. [PMID: 34249406 PMCID: PMC8263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
20
|
Chen K, Hou Y, Liao R, Li Y, Yang H, Gong J. LncRNA SNHG6 promotes G1/S-phase transition in hepatocellular carcinoma by impairing miR-204-5p-mediated inhibition of E2F1. Oncogene 2021; 40:3217-3230. [PMID: 33824472 DOI: 10.1038/s41388-021-01671-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) function as competitive endogenous RNA (ceRNA) targeting proteins and genes; however, the role of lncRNAs in hepatocellular carcinoma (HCC) is not well understood. We investigated the mechanism by which lncRNA SNHG6 promotes the development of HCC. RT-qPCR revealed upregulated lncRNA SNHG6 in the HCC setting. Elevated SNHG6 expression was indicative of poor prognosis in patients with HCC. SNHG6 overexpression resulted in increased cyclin D1, cyclin E1, and E2F1 expression both in vitro and in vivo. SNHG6 also promoted HCC cell proliferation by enhancing G1-S phase transition in vitro. Dual luciferase reporter assays, RIP, and RNA pull-down assays demonstrated SNHG6 competitively bound to miR-204-5p and inhibited its expression preventing miR-204-5p from targeting E2F1. Overexpression of miR-204-5p abolished the effect of SNHG6. Our data suggest that SNHG6 functions as a ceRNA that targets miR-204-5p resulting in an increased E2F1 expression and enhanced G1-S phase transition, thereby promoting the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Kai Chen
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Yifu Hou
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, School of Clinical Medicine, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- The Third Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- The Second Ward of Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
21
|
Wang T, Liu Y, Zhang H, Fang Z, Zhang R, Zhang W, Fan Y, Xiang R. Crystal structures of two inhibitors in complex with histone lysine demethylase 4D (KDM4D) provide new insights for rational drug design. Biochem Biophys Res Commun 2021; 554:71-75. [PMID: 33780862 DOI: 10.1016/j.bbrc.2021.03.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Histone lysine demethylase 4D (KDM4D), also known as JMJD2D, plays an important role in cell proliferation and survival and has been associated with several tumor types. KDM4D has emerged as a potential target for the treatment of human cancer. Here, we reported crystal complex structures for two KDM4D inhibitors, OWS [2-(1H-pyrazol-3-yl)isonicotinic acid] and 10r (5-hydroxy-2-methylpyrazolo[1,5-a]pyrido[3,2-e]pyrimidine-3-carbonitrile), which were both determined to 2.0 Å. OWS is a newly discovered KDM4D inhibitor (IC50 = 4.28 μM) and the critical pharmacophores of this compound are confirmed by the complex structure. Compound 10r is a KDM4D inhibitor reported by us previously. To clarify the binding mode in more detail, the crystal structure was determined and the comparison analysis revealed unique interactions that had never been observed before. Overall, our data provide new structural insights for rational design and offer an opportunity for optimization of KDM4D inhibitors.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Yang Liu
- West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Hailin Zhang
- West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhen Fang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Rong Zhang
- West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wenqing Zhang
- West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
22
|
Enhancer of zeste homolog 2-mediated paired box 8 methylation promotes gastrointestinal stromal tumor progression through Wnt4 downregulation. Cancer Gene Ther 2021; 28:1162-1174. [PMID: 33479444 DOI: 10.1038/s41417-020-00266-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a refractory malignant tumor without satisfactory therapy. In recent years, aberrant gene methylation has been highlighted as an inducer for tumor progression. In this study, we explored whether enhancer of zeste homolog 2 (EZH2)-mediated paired box 8 (PAX8) methylation affects GIST development through regulation of Wnt4. A total of 50 cases of GIST tissues were collected and the human GIST cell lines were cultured. PAX8 methylation was examined using MS-PCR. Following loss- and gain-function approaches, GIST cell proliferation, migration, invasion, and apoptosis were examined by CCK-8 assay, Transwell assay and flow cytometry. The expression of proliferation related factors and apoptosis related factors was determined. Finally, xenograft tumors in nude mice were observed to examine in vivo tumorigenicity of GIST cells. Downregulated PAX8 and upregulated EZH2 expression was found in GIST tissues. Overexpression of PAX8 or suppression of PAX8 methylation using DNA methyltransferase inhibitor 5-Aza-dC inhibited the proliferation, migration, and invasion of GIST cells while promoting their apoptosis (diminished PCNA, Ki67 and Bcl-2, elevated Bax, and cleaved caspase-3). EZH2 promoted PAX8 methylation to inhibit its expression. Downregulated PAX8 decreased Wnt4 expression to accelerate GIST progression both in vitro and in vivo. Collectively, EZH2 inhibits PAX8 expression by promoting its methylation, which thus downregulates Wnt4 expression, thereby promoting the development of GIST.
Collapse
|
23
|
Deng Y, Li M, Zhuo M, Guo P, Chen Q, Mo P, Li W, Yu C. Histone demethylase JMJD2D promotes the self-renewal of liver cancer stem-like cells by enhancing EpCAM and Sox9 expression. J Biol Chem 2021; 296:100121. [PMID: 33434575 PMCID: PMC7948496 DOI: 10.1074/jbc.ra120.015335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem-like cells (CSCs) contribute to the high rate of tumor heterogeneity, metastasis, therapeutic resistance, and recurrence. Histone lysine demethylase 4D (KDM4D or JMJD2D) is highly expressed in colon and liver tumors, where it promotes cancer progression; however, the role of JMJD2D in CSCs remains unclear. Here, we show that JMJD2D expression was increased in liver cancer stem-like cells (LCSCs); downregulation of JMJD2D inhibited the self-renewal of LCSCs in vitro and in vivo and inhibited the lung metastasis of LCSCs by reducing the survival and the early lung seeding of circulating LCSCs. Mechanistically, JMJD2D promoted LCSC self-renewal by enhancing the expression of CSC markers EpCAM and Sox9; JMJD2D reduced H3K9me3 levels on the promoters of EpCAM and Sox9 to enhance their transcription via interaction with β-catenin/TCF4 and Notch1 intracellular domain, respectively. Restoration of EpCAM and Sox9 expression in JMJD2D-knockdown liver cancer cells rescued the self-renewal of LCSCs. Pharmacological inhibition of JMJD2D using 5-c-8HQ reduced the self-renewal of LCSCs and liver cancer progression. Collectively, our findings suggest that JMJD2D promotes LCSC self-renewal by enhancing EpCAM and Sox9 expression via Wnt/β-catenin and Notch signaling pathways and is a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Yuan Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, China
| | - Minghui Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, China.
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
24
|
Peng K, Zhuo M, Li M, Chen Q, Mo P, Yu C. Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression. Oncogene 2020; 39:7076-7091. [PMID: 32989255 DOI: 10.1038/s41388-020-01483-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023]
Abstract
Hypoxia-inducible factor 1 (HIF1) signaling pathway plays a key role in cancer progression by enhancing glycolysis through activating the transcription of glycolytic genes. JMJD2D, a histone demethylase that specifically demethylates H3K9me2/3, can promote colorectal cancer (CRC) progression. However, it is unknown whether JMJD2D could promote CRC progression by enhancing glycolysis through activating HIF1 signaling pathway. In this study, we found that downregulation of JMJD2D inhibited the glycolysis in CRC cells through suppressing HIF1 signaling pathway to downregulate glycolytic gene expression. Restoring HIF1 signaling by enforced expression of HIF1α in JMJD2D-knockdown CRC cells partially recovered CRC cell glycolysis, proliferation, migration, invasion, xenograft growth, and metastasis, suggesting that JMJD2D promotes CRC progression by enhancing glycolysis through activating HIF1 signaling pathway. JMJD2D activated HIF1 signaling pathway through three different mechanisms: JMJD2D cooperated with the transcription factor SOX9 to enhance mTOR expression and then to promote HIF1α translation; JMJD2D cooperated with the transcription factor c-Fos to enhance HIF1β transcription; JMJD2D interacted and cooperated with HIF1α to enhance the expression of glycolytic gene. The demethylase-defective mutant of JMJD2D could not induce the expression of mTOR, HIF1α, HIF1β, and glycolytic genes, suggesting that the demethylase activity of JMJD2D is important for glycolysis through activating HIF1 signaling. Clinically, a highly positive correlation between the expression of JMJD2D and mTOR, HIF1β, and several glycolytic genes in human CRC specimens was identified. Collectively, our study reveals an important role of JMJD2D in CRC progression by enhancing glycolysis through activating HIF1 signaling pathway.
Collapse
Affiliation(s)
- Kesong Peng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minghui Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
25
|
Liu OHF, Kiema M, Beter M, Ylä-Herttuala S, Laakkonen JP, Kaikkonen MU. Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells. Arterioscler Thromb Vasc Biol 2020; 40:2665-2677. [PMID: 32938217 DOI: 10.1161/atvbaha.120.315214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that the expression of several lysine (K)-specific demethylases (KDMs) is induced by hypoxia. Here, we sought to investigate the exact mechanisms underlying this regulation and its functional implications for endothelial cell function, such as angiogenesis. Approach and Results: We analyzed the expression changes of KDMs under hypoxia and modulation of HIF (hypoxia-inducible factor) expression using GRO-Seq and RNA-Seq in endothelial cells. We provide evidence that the majority of the KDMs are induced at the level of nascent transcription mediated by the action of HIF-1α and HIF-2α. Importantly, we show that transcriptional changes at the level of initiation represent the major mechanism of gene activation. To delineate the epigenetic effects of hypoxia and HIF activation in normoxia, we analyzed the genome-wide changes of H3K27me3 using chromosome immunoprecipitation-Seq. We discovered a redistribution of H3K27me3 at ≈2000 to 3000 transcriptionally active loci nearby genes implicated in angiogenesis. Among these, we demonstrate that vascular endothelial growth factor A (VEGFA) expression is partly induced by KDM4B- and KDM6B-mediated demethylation of nearby regions. Knockdown of KDM4B and KDM6B decreased cell proliferation, tube formation, and endothelial sprouting while affecting hundreds of genes associated with angiogenesis. These findings provide novel insights into the regulation of KDMs by hypoxia and the epigenetic regulation of VEGFA-mediated angiogenesis. CONCLUSIONS Our study describes an additional level of epigenetic regulation where hypoxia induces redistribution of H3K27me3 around genes implicated in proliferation and angiogenesis. More specifically, we demonstrate that KDM4B and KDM6B play a key role in modulating the expression of the major angiogenic driver VEGFA.
Collapse
Affiliation(s)
- Oscar Hsin-Fu Liu
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Mustafa Beter
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Seppo Ylä-Herttuala
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| |
Collapse
|
26
|
Cai S, Wang J, Zeng W, Cheng X, Liu L, Li W. Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY) 2020; 12:14990-15001. [PMID: 32726297 PMCID: PMC7425427 DOI: 10.18632/aging.103558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022]
Abstract
Epigenetic alterations have been reported to play critical roles in the development of colorectal cancer (CRC). However, the biological function of the lysine-specific histone demethylase 1B (LSD2/KDM1B) in CRC is not well understood. Therefore, we investigated the characteristics of LSD2 in CRC. We observed significant upregulation of LSD2 in CRC tissue compared to that in normal colorectal tissue. LSD2 promotes CRC cell proliferation and inhibits cell apoptosis through cell cycle regulation, promoting CRC progression both in vitro and in vivo. We found that LSD2 performs these functions by inhibiting the p53-p21-Rb pathway. Finally, we found that LSD2 directly binds to p53 and represses p53 expression via H3K4me2 demethylation at the p53 promoter. Our results revealed that LSD2 acts as an oncogene by binding and inhibiting p53 activity in CRC. Thus, LSD2 may be a new molecular target for CRC treatment.
Collapse
Affiliation(s)
- Shaoxin Cai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Jinsi Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Wei Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xuefei Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Lihang Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weihua Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
27
|
Li M, Deng Y, Zhuo M, Zhou H, Kong X, Xia X, Su Z, Chen Q, Guo P, Mo P, Yu C, Li W. Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression. Am J Cancer Res 2020; 10:8863-8879. [PMID: 32754284 PMCID: PMC7392006 DOI: 10.7150/thno.45581] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver cancer specimens and non-tumorous liver tissues by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in liver cancer cells using small hairpin RNAs, and cells were analyzed with Western blot, real-time PCR, cell viability, colony formation, and flow cytometry assays. Cells were also grown as tumor xenografts in nude mice, and the tumor cell proliferation and apoptosis were measured by immunohistochemical analysis. The relationship between JMJD2D and p53 was studied by co-immunoprecipitation, chromatin immunoprecipitation, and electric mobility shift assay. Wild-type and JMJD2D-knockout mice were intraperitoneally injected with diethylnitrosamine (DEN) to induce liver tumors and the liver cancer initiation and progression were investigated. Results: JMJD2D was frequently upregulated in human liver cancer specimens compared with non-tumorous liver tissues. The overall survival of liver cancer patients with high JMJD2D expression was significantly decreased compared to that with low JMJD2D expression. JMJD2D knockdown reduced liver cancer cell proliferation and xenograft tumor growth, sensitized cells to chemotherapeutic drug-induced apoptosis, and increased the expression of cell cycle inhibitor p21 and pro-apoptosis gene PUMA. Genetically, JMJD2D deficiency protected mice against DEN-induced liver cancer initiation and progression. Knockout of tumor suppressor p53 significantly reduced the effects of JMJD2D knockdown on cell proliferation, apoptosis, and the expression of p21 and PUMA, suggesting that JMJD2D regulates liver cancer cell functions in part through inhibiting p53 signaling pathway. Mechanistically, JMJD2D directly interacted with p53 and inhibited p53 recruitment to the p21 and PUMA promoters in a demethylation activity-independent manner, implicating a demethylase-independent function of JMJD2D as a novel p53 antagonist. In addition, JMJD2D could activate Wnt/β-catenin signaling to promote liver cancer cell proliferation. Conclusion: Our study demonstrates that JMJD2D can antagonize the tumor suppressor p53 and activate an oncogenic signaling pathway (such as Wnt/β-catenin signaling pathway) simultaneously to promote liver cancer initiation and progression, suggesting that JMJD2D may serve as a novel target for liver cancer treatment.
Collapse
|
28
|
Liu W, Zeng X, Yin Y, Li C, Yang W, Wan W, Shi L, Wang G, Tao K, Zhang P. Targeting the WEE1 kinase strengthens the antitumor activity of imatinib via promoting KIT autophagic degradation in gastrointestinal stromal tumors. Gastric Cancer 2020; 23:39-51. [PMID: 31197522 DOI: 10.1007/s10120-019-00977-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activating mutation of KIT or PDGFRA is the primary molecular mechanism for gastrointestinal stromal tumors (GISTs). Although imatinib has a revolutionary effect on GIST therapeutics, the benefits are not durable. Increasing reports have demonstrated that cell cycle checkpoint plays critical roles in GIST. Here, we explore the role of WEE1 kinase in GIST progression. METHODS Oncomine public database, western blotting, and immunohistochemistry were used to analyze WEE1 expression in GISTs. Using MTT assays, colony formation analysis, and flow cytometry, we examined the role of WEE1 in GIST cells and the antitumor activity of the inhibitor MK1775 alone, or in combination with imatinib. Cycloheximide chase assay and pharmacological inhibition of autophagy and proteasome pathway were performed to analyze KIT expression. Additionally, autophagic markers Beclin1 and LC3B were detected by western blotting. RESULTS Upregulated WEE1 expression was observed in GIST tissues and correlated with tumor size, mitotic count, and risk grade. Inhibition of WEE1 significantly suppressed GIST cell proliferation, induced apoptosis and cell cycle arrest. Imatinib and MK1775 co-treatment markedly enhanced the antitumor activity. Targeting WEE1 decreased the expression of KIT expression. Moreover, WEE1 stabilized KIT protein and KIT reduction observed upon WEE1 inhibition could be reversed by pharmacological inhibition of autophagy, but not proteasome pathway. WEE1 inhibition also increased Beclin1 expression and LC3B II/I ratio in GIST cells. CONCLUSIONS Our data suggest that WEE1 plays a pivotal role in GIST proliferation. WEE1 inhibition could promote KIT autophagic degradation and, therefore, targeting WEE1 might represent a novel strategy for GIST therapies.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenze Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Schurman SH, O'Hanlon TP, McGrath JA, Gruzdev A, Bektas A, Xu H, Garantziotis S, Zeldin DC, Miller FW. Transethnic associations among immune-mediated diseases and single-nucleotide polymorphisms of the aryl hydrocarbon response gene ARNT and the PTPN22 immune regulatory gene. J Autoimmun 2019; 107:102363. [PMID: 31759816 DOI: 10.1016/j.jaut.2019.102363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because immune responses are sensitive to environmental changes that drive selection of genetic variants, we hypothesized that polymorphisms of some xenobiotic response and immune response genes may be associated with specific types of immune-mediated diseases (IMD), while others may be associated with IMD as a larger category regardless of specific phenotype or ethnicity. OBJECTIVE To examine transethnic gene-IMD associations for single nucleotide polymorphism (SNP) frequencies of prototypic xenobiotic response genes-aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), AHR repressor (AHRR) - and a prototypic immune response gene, protein tyrosine phosphatase, non-receptor type 22 (PTPN22), in subjects from the Environmental Polymorphisms Registry (EPR). METHODS Subjects (n = 3731) were genotyped for 14 SNPs associated with functional variants of the AHR, ARNT, AHRR, and PTPN22 genes, and their frequencies were compared among African Americans (n = 1562), Caucasians (n = 1838), and Hispanics (n = 331) with previously reported data. Of those genotyped, 2015 EPR subjects completed a Health and Exposure survey. SNPs were assessed via PLINK for associations with IMD, which included those with autoimmune diseases, allergic disorders, asthma, or idiopathic pulmonary fibrosis. Transethnic meta-analyses were performed using METAL and MANTRA approaches. RESULTS ARNT SNP rs11204735 was significantly associated with autoimmune disease by transethnic meta-analyses using METAL (odds ratio, OR [95% confidence interval] = 1.29 [1.08-1.55]) and MANTRA (ORs ranged from 1.29 to 1.30), whereas ARNT SNP rs1889740 showed a significant association with autoimmune disease by METAL (OR = 1.25 [1.06-1.47]). For Caucasian females, PTPN22 SNP rs2476601 was significantly associated with autoimmune disease by allelic association tests (OR = 1.99, [1.30-3.04]). In Caucasians and Caucasian males, PTPN22 SNP rs3811021 was significantly associated with IMD (OR = 1.39 [1.12-1.72] and 1.50 [1.12-2.02], respectively) and allergic disease (OR = 1.39 [1.12-1.71], and 1.62 [1.19-2.20], respectively). In the transethnic meta-analysis, PTPN22 SNP rs3811021 was significantly implicated in IMD by METAL (OR = 1.31 [1.10-1.56]), and both METAL and MANTRA suggested that rs3811021 was associated with IMD and allergic disease in males across all three ethnic groups (IMD METAL OR = 1.50 [1.15-1.95]; IMD MANTRA ORs ranged from 1.47 to 1.50; allergic disease METAL OR = 1.58 [1.20-2.08]; allergic disease MANTRA ORs ranged from 1.55 to 1.59). CONCLUSIONS Some xenobiotic and immune response gene polymorphisms were shown here, for the first time, to have associations across a broad spectrum of IMD and ethnicities. Our findings also suggest a role for ARNT in the development of autoimmune diseases, implicating environmental factors metabolized by this pathway in pathogenesis. Further studies are needed to confirm these data, assess the implications of these findings, define gene-environment interactions, and explore the mechanisms leading to these increasingly prevalent disorders.
Collapse
Affiliation(s)
- Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA.
| | - Terrance P O'Hanlon
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Bethesda, MD, USA.
| | | | - Artiom Gruzdev
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Hong Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA.
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, USA; Research Triangle Park, NC, USA; Bethesda, MD, USA.
| |
Collapse
|
30
|
Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Asmoniene V, Liutkeviciene R. Does CETP rs5882, rs708272, SIRT1 rs12778366, FGFR2 rs2981582, STAT3 rs744166, VEGFA rs833068, IL6 rs1800795 polymorphisms play a role in optic neuritis development? Ophthalmic Genet 2019; 40:219-226. [DOI: 10.1080/13816810.2019.1622022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Greta Gedvilaite
- Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Virginija Asmoniene
- Department of genetics and molecular medicine, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
31
|
Hu F, Li H, Liu L, Xu F, Lai S, Luo X, Hu J, Yang X. Correction to: Histone demethylase KDM4D promotes gastrointestinal stromal tumor progression through HIF1β/VEGFA signalling. Mol Cancer 2018; 17:135. [PMID: 30213277 PMCID: PMC6137922 DOI: 10.1186/s12943-018-0885-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 01/30/2023] Open
Affiliation(s)
- Fuqing Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haijie Li
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Senyan Lai
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Yang
- Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|