1
|
Yoshikawa M, Nakayama T, Asaba K. Systematic proteome-wide Mendelian randomization to prioritize causal plasma proteins for skin cancers. Commun Biol 2024; 7:1681. [PMID: 39702585 DOI: 10.1038/s42003-024-07403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
Skin cancer is one of the most common cancers worldwide. Some risk factors including sun exposure and MC1R variants are recognized; however, the identification of additional genetic factors is essential for the development of novel therapeutic strategies. Here, we conducted a proteome-wide Mendelian randomization (MR) using plasma protein quantitative trait loci (pQTLs) from a published study and the UK Biobank genome-wide association study (GWAS) of skin cancers. We replicated the published result of ASIP, which was significantly associated with increased risks of basal cell carcinoma (BCC) and malignant melanoma. Moreover, we newly identified CTSS, which was significantly associated with a decreased risk of BCC. A series of replication analyses using the DeCODE pQTLs and the FinnGen GWAS, and sensitivity analyses including Steiger filtering, reverse MR, and Bayesian colocalization, supported our primary results. Our findings highlighted the possibility of prioritizing proteins for novel therapeutic or preventive targets and biomarkers for skin cancers.
Collapse
Affiliation(s)
- Masahiro Yoshikawa
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kensuke Asaba
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Wang M, Gao X, Zhang L. Recent global patterns in skin cancer incidence, mortality, and prevalence. Chin Med J (Engl) 2024:00029330-990000000-01365. [PMID: 39682020 DOI: 10.1097/cm9.0000000000003416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Skin cancer is a common skin disease whose incidence and mortality rates have been showing yearly increases. In this report, we update the most recent data on skin cancer as obtained from GLOBOCAN 2022. METHODS The incidence and mortality rates of skin cancer (melanoma of skin and non-melanoma skin cancer) in GLOBOCAN 2022 were reviewed. These data were analyzed and the characteristics of incidence and mortality across five continents and top five countries in each continent are presented. In addition, correlations between Human Development Index (HDI) and age-standardized incidence and mortality rates of these two skin cancers are described. RESULTS The GLOBOCAN 2022 data indicated that melanoma was the 17th most common cancer. An estimated 331,722 people were diagnosed with melanoma globally and approximately 58,667 died from this disease. For non-melanoma skin cancer, it ranks as the 5th most common cancer, and estimated 1,234,533 people were diagnosed with non-melanoma skin cancer globally and approximately 69,416 died from this disease. The incidence of skin cancer varies across geographic regions and countries, with a predominance observed in Oceania, North America, and Europe. Australia was ranked first in terms of incidence, while incidence rates in Africa and Asia were very low. Despite these regional differences in incidence, there was little geographic variation in mortality rates. Currently, the number of deaths from non-melanoma skin cancer exceeds that of melanoma of skin. HDI was positively associated with the incidence of both types of skin cancers, with a positive correlation obtained between HDI and mortality from melanoma of skin and a negative correlation between HDI and mortality from non-melanoma skin cancer. CONCLUSIONS Skin cancer remains a major disease burden worldwide. Substantial variations are observed across countries and regions with incidence rates being greater in Caucasians, the elderly, and in groups with prolonged exposures to ultraviolet rays. Further research on skin cancer will be required to provide a rationale for more effective preventions and treatments of this condition.
Collapse
Affiliation(s)
- Mingyue Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| | - Li Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| |
Collapse
|
3
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2024:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had a favorable particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
4
|
Imran M, Moyle PM, Kamato D, Mohammed Y. Advances in, and prospects of, 3D preclinical models for skin drug discovery. Drug Discov Today 2024; 29:104208. [PMID: 39396673 DOI: 10.1016/j.drudis.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The skin has an important role in regulating homeostasis and protecting the body from endogenous and exogenous microenvironments. Although 3D models for drug discovery have been extensively studied, there is a growing demand for more advanced 3D skin models to enhance skin research. The use of these advanced skin models holds promise across domains such as cosmetics, skin disease treatments, and toxicity testing of new therapeutics. Recent advances include the development of skin-on-a-chip, spheroids, reconstructed skin, organoids, and computational approaches, including quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research. These innovations are bridging the gap between traditional 2D and advanced 3D models, moving progress from research to clinical applications. In this review, we highlight in vitro and computational skin models with advanced drug discovery for skin-related applications.
Collapse
Affiliation(s)
- Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Environment and Science, Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
5
|
Niu L, Liu S, Shen J, Chang J, Li X, Zhang L. ATF3 regulates CDC42 transcription and influences cytoskeleton remodeling, thus inhibiting the proliferation, migration and invasion of malignant skin melanoma cells. Melanoma Res 2024:00008390-990000000-00178. [PMID: 39591541 DOI: 10.1097/cmr.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cutaneous malignant melanoma (CMM) is one of the most aggressive and lethal types of skin cancer. Cytoskeletal remodeling is a key factor in the progression of CMM. Previous research has shown that activating transcription factor 3 (ATF3) inhibits metastasis in bladder cancer by regulating actin cytoskeleton remodeling through gelsolin. However, whether ATF3 plays a similar role in cytoskeletal remodeling in CMM cells remains unknown. Various gene and protein expression analyses were performed using techniques such as reverse transcription quantitative PCR, western blot, immunofluorescent staining, and immunohistochemical staining. CMM viability, migration, and invasion were examined through cell counting kit-8 and transwell assays. The interactions between cell division cycle 42 (CDC42) and ATF3 were investigated using chromatin immunoprecipitation and dual-luciferase reporter assays. CDC42 was upregulated in CMM tissues and cells. Cytoskeletal remodeling of CMM cells, as well as CMM cell proliferation, migration, and invasion, were inhibited by CDC42 or ATF3. ATF3 targeted the CDC42 promoter region to regulate its transcriptional activity. ATF3 suppresses cytoskeletal remodeling in CMM cells, thereby inhibiting CMM progression and metastasis through CDC42. This research may provide a foundation for using ATF3 as a therapeutic target for CMM.
Collapse
Affiliation(s)
- Liang Niu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital
| | - Jiuxiao Shen
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Jin Chang
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Ling Zhang
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| |
Collapse
|
6
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
8
|
Erdoğan MM, Yerlikaya Kavak S. Role of spexin and DARS2 as potential biomarkers in basal cell carcinoma and cutaneous malignant melanoma diagnosis, and as therapeutic targets. Arch Dermatol Res 2024; 316:698. [PMID: 39417889 DOI: 10.1007/s00403-024-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Basal cell carcinoma (BCC) is a slowly progressive, locally aggressive and rarely metastasizing cancer, and although its mortality is low, its morbidity and cost of disease are high. While BCC is more common, cutaneous malignant melanoma (CMM) is significant due to its higher mortality rate. These patients can be treated, but recurrence, metastasis and mortality may occur in such patients. Various environmental, phenotypic and genotypic factors, especially ultraviolet (UV) radiations, play a role in the etiology of BCC and CMM. Histopathological examination continues to be the "gold standard" in their diagnosis. Spexin (SPX) and DARS2 are newly discovered proteins linked to many diseases, including cancer. These proteins may have an effect on the development and expression of skin cancers such as BCC and CMM. In this study, we evaluated the potential of SPX and DARS2 expressions as immunohistochemical biomarkers in the differential diagnosis of BCC and CMM. This study was conducted retrospectively using samples taken from the pathology laboratory. A total of 180 patient samples were used. The control group consisted of healthy skin tissues of the patients, and the other groups consisted of BCC and CMM tissues of the same patients. Tissue samples of all three groups were evaluated immunohistochemically with SPX and DARS2. The immunoreactivity of SPX was found to be higher in BCC and CMM tissue samples than in healthy skin tissues in the control group. DARS2 immunoreactivity was found to be higher in CMM tissues compared to the other two groups, and statistically significant in BCC tissues when compared with healthy control group tissues. SPX can be used as an immunohistochemical biomarker in the diagnosis of BCC and CMM. Since DARS2 expression is statistically more significant in CMM tissues than in BCC tissues, it can be used in differential diagnosis.
Collapse
|
9
|
Gąsiorowski K, Gontarz M, Bargiel J, Marecik T, Szczurowski P, Wyszyńska-Pawelec G. Reconstructive Techniques Following Malignant Eyelid Tumour Excision-Our Experience. J Clin Med 2024; 13:6120. [PMID: 39458069 PMCID: PMC11508535 DOI: 10.3390/jcm13206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Malignant eyelid tumours present a considerable challenge in the field of ophthalmic oncology, necessitating a combination of precision oncological care and meticulous reconstruction to ensure the preservation of eyelid functionality and the maintenance of facial aesthetics. Method: This study presents a review of the outcomes of 167 patients who underwent eyelid reconstruction following the excision of primary non-melanocytic malignant tumours. The choice of reconstruction technique was dependent on a number of factors, including the stage of the tumour, its location, and the characteristics of the patient. The most commonly used techniques included regional flaps, local flaps, and skin grafts. The most frequently employed reconstruction techniques were forehead flaps (59 cases), simple excisions (38 cases), and Mustarde cheek flaps (16 cases). Result: The postoperative complications, including ectropion, epiphora, and flap necrosis, were recorded. However, no significant correlation was found between the risk of complications and either the location of the tumour or the reconstruction method employed. Despite the complexity of medial canthal and lower eyelid reconstruction, satisfactory aesthetic and functional outcomes were generally achieved. Conclusions: This study emphasises the importance of individualised surgical planning, highlighting the advantages and limitations of various techniques to optimise both the functional and aesthetic results.
Collapse
Affiliation(s)
- Krzysztof Gąsiorowski
- Department of Cranio-Maxillofacial Surgery, Medical College, Jagiellonian University, 30-688 Cracow, Poland; (M.G.); (J.B.); (T.M.); (P.S.); (G.W.-P.)
| | | | | | | | | | | |
Collapse
|
10
|
Sun T, Liu C, Kong L, Zha J, Ni G. Cold plasma irradiation inhibits skin cancer via ferroptosis. Biomed Phys Eng Express 2024; 10:065036. [PMID: 39390682 DOI: 10.1088/2057-1976/ad8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cold atmospheric plasma (CAP) has been extensively utilized in medical treatment, particularly in cancer therapy. However, the underlying mechanism of CAP in skin cancer treatment remains elusive. In this study, we established a skin cancer model using CAP treatmentin vitro. Also, we established the Xenograft experiment modelin vivo. The results demonstrated that treatment with CAP induced ferroptosis, resulting in a significant reduction in the viability, migration, and invasive capacities of A431 squamous cell carcinoma, a type of skin cancer. Mechanistically, the significant production of reactive oxygen species (ROS) by CAP induces DNA damage, which then activates Ataxia-telangiectasia mutated (ATM) and p53 through acetylation, while simultaneously suppressing the expression of Solute Carrier Family 7 Member 11 (SLC7A11). Consequently, this cascade led to the down-regulation of intracellular Glutathione peroxidase 4 (GPX4), ultimately resulting in ferroptosis. CAP exhibits a favorable impact on skin cancer treatment, suggesting its potential medical application in skin cancer therapy.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingjing Zha
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| |
Collapse
|
11
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Li R, Luo W, Chen X, Zeng Q, Yang S, Wang P, Hu J, Chen A. An observational and genetic investigation into the association between psoriasis and risk of malignancy. Nat Commun 2024; 15:7952. [PMID: 39261450 PMCID: PMC11391051 DOI: 10.1038/s41467-024-51824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
The relationship between psoriasis and site-specific cancers remains unclear. Here, we aim to investigate whether psoriasis is causally associated with site-specific cancers. We use observational and genetic data from the UK Biobank, obtaining GWAS summary data, eQTL analysis data, TCGA data, and GTEx data from public datasets. We perform PheWAS, polygenic risk score analysis, and one-sample and two-sample Mendelian randomization analyses to investigate the potential causal associations between psoriasis and cancers. In the unselected PheWAS analysis, psoriasis is associated with higher risks of 16 types of cancer. Using one-sample Mendelian randomization analyses, it is found that genetically predicted psoriasis is associated with higher risks of anal canal cancer, breast cancer, follicular non-Hodgkin's lymphoma and nonmelanoma skin cancer in women; and lung cancer and kidney cancer in men. Our two-sample Mendelian randomization analysis indicates that psoriasis is causally associated with breast cancer and lung cancer. Gene annotation shows that psoriasis-related genes, such as ERAP1, are significantly different in lung and breast cancer tissues. Taken together, clinical attention to lung cancer and breast cancer may be warranted among patients with psoriasis.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Kukula-Koch W, Dycha N, Lechwar P, Lasota M, Okoń E, Szczeblewski P, Wawruszak A, Tarabasz D, Hubert J, Wilkołek P, Halabalaki M, Gaweł-Bęben K. Vaccinium Species-Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules 2024; 14:1110. [PMID: 39334876 PMCID: PMC11430151 DOI: 10.3390/biom14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Vaccinium is represented by shrubs growing in a temperate climate that have been used for ages as traditional remedies in the treatment of digestive problems, in diabetes, renal stones or as antiseptics due to the presence of polyphenols (anthocyanins, flavonoids and tannins) in their fruits and leaves. Recent studies confirm their marked potential in the treatment of skin disorders and as skin care cosmetics. The aim of this review is to present the role of Vaccinium spp. as cosmetic products, highlight their potential and prove the biological properties exerted by the extracts from different species that can be useful for the preparation of innovative cosmetics. In the manuscript both skin care and therapeutic applications of the representatives of this gender will be discussed that include the antioxidant, skin lightening, UV-protective, antimicrobial, anti-inflammatory, and chemopreventive properties to shed new light on these underestimated plants.
Collapse
Affiliation(s)
- Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Natalia Dycha
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Paulina Lechwar
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Magdalena Lasota
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Dominik Tarabasz
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | | | - Piotr Wilkołek
- Department of Clinical Diagnostics and Veterinary Dermatology, University of Life Sciences in Lublin, 32 Gleboka Str., 20-612 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| |
Collapse
|
14
|
Fu X, Zeng F, Li L, Liu G, Zhong Q, Chen S. The Causal Relationship Between Physical Activity and Skin Cancer Risk: An Univariable Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2024; 17:1963-1972. [PMID: 39220291 PMCID: PMC11366249 DOI: 10.2147/ccid.s472443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Background The existing observational research on the relationship between physical activity (PA) and skin cancer (SC) is contentious, which points to the intricate nature of their association and underscores the imperative for more nuanced research to untangle the causal dynamics at play. The aim of this article is to delve deeper into this complex relationship, seeking to clarify whether PA serves as a protective factor against SC, or contributes to its risk. Methods We utilized data from the genome-wide association study (GWAS) of PA from GWAS Catalog (include self-reported moderate to vigorous PA (MVPA), self-reported vigorous PA (VPA), and accelerometer-based average-accelerated PA). The data of SC is from FinnGen. All of the participants are of European ancestry. We used two-sample Mendelian Randomization (TSMR) to analyze the causal relationship between PA and SC.The research was conducted using inverse variance weighted (IVW) method as the primary approach, and MR Egger regression as supplementary analytical method. To ensure the robustness of the results, Cochran's Q-test and MR pleiotropy residual sum and outlier (MR-PRESSO) global tests were used to measure sensitivity. Results Our analysis indicated that average-accelerated PA was associated with an increased risk of SC (ORIVW = 0.94, 95% CI 0.93-0.96, P < 0.001). While neither MVPA (ORIVW = 0.99, 95% CI 0.67-1.47, P = 0.962) nor VPA (ORIVW = 0.80, 95% CI 0.29-2.18, P = 0.656) shows causal relationship on risk of SC. Conclusion Our research suggests that PA is associated with a decrease in SC, provides a new perspective for future SC prevention. Our research findings bolster the hypothesis that increased levels of PA, characterized by average acceleration, are associated with a reduced risk of developing skin cancer. This has filled the gap of research on the causal relationship between PA and SC, and could pave the way for novel preventive strategies against skin cancer.
Collapse
Affiliation(s)
- Xiaoming Fu
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Fuhai Zeng
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Linling Li
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Guoquan Liu
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Qing Zhong
- Department of Science and Technology, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Shouwan Chen
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| |
Collapse
|
15
|
Londhe S, Tripathy S, Saha S, Patel A, Chandra Y, Patra CR. Therapeutic Potential of Silver Nitroprusside Nanoparticles for Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:5057-5075. [PMID: 39115261 DOI: 10.1021/acsabm.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Melanoma has gained considerable attention due to its high mortality and morbidity rate worldwide. The currently available treatment options are associated with several limitations such as nonspecificity, drug resistance, easy clearance, low efficacy, toxicity-related issues, etc. To this end, nanotechnology has garnered significant attention for the treatment of melanoma. In the present manuscript, we have demonstrated the in vitro and in vivo anticancer activity of silver nitroprusside nanoparticles (abbreviated as AgNNPs) against melanoma. The AgNNPs exhibit cytotoxicity against B16F10 cells, which has been investigated by several in vitro experiments including [methyl 3H]-thymidine incorporation assay, cell cycle and apoptosis analysis by flow cytometry, and ROS generation through DCFDA, DHE, and DAF2A reagents. Further, the internalization of nanoparticles was determined by ICPOES analysis, while their colocalization was analyzed by confocal microscopy. Additionally, JC-1 staining is performed to examine mitochondrial membrane potential (MMP). Cytoskeleton integrity was observed by phalloidin staining. Expression of different markers (Ki-67, cytochrome c, and E-cadherin) was checked using an immunofluorescence assay. The in vivo therapeutic efficacy of AgNNPs has been validated in the melanoma model established by inoculating B16F10 cells into the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of AgNNPs reduced melanoma growth and increased the survivability of tumor-bearing mice. The in vivo immunofluorescence studies (Ki-67, CD31, and E-cadherin) and TUNEL assay support the inhibitory and apoptotic nature of AgNNPs toward melanoma, respectively. Furthermore, the various signaling pathways and molecular mechanisms involved in anticancer activity are evaluated by Western blot analysis. These findings altogether demonstrate the promising anticancer potential of AgNNPs toward melanoma.
Collapse
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
16
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
17
|
Chgari O, Wahnou H, Ndayambaje M, Moukhfi F, Benkhnigue O, Marnissi F, Limami Y, Oudghiri M. Orbea variegata (L.) Haw in skin carcinogenesis: insights from an in vivo male Swiss mouse model study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:630-645. [PMID: 38741420 DOI: 10.1080/15287394.2024.2354790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Skin cancer is the most widespread type of malignant tumor representing a major public health concern. Considering the numerous side effects associated with conventional treatments, phytotherapy may be regarded as a viable medicinal alternative. This study aimed to investigate the therapeutic potential of Orbea variegata (L.) Haw, an ornamental plant, in treating skin cancer using an animal model induced by a combination of ultraviolet (UV) irradiation and sulfuric acid treatment. The hydroethanolic extract of Orbea variegata underwent phytochemical characterization, identifying the presence of reducing sugars, coumarins, alkaloids, flavonoids, tannins, and saponins through qualitative screening. Quantitative analysis demonstrated significant amounts of phenolic compounds (29.435 ± 0.571 mg GAE/g of dry extract), flavonoids (6.711 ± 0.272 mg QE/g of dry extract), and tannins (274.037 ± 11.3 mg CE/g of dry extract). The administration the hydroethanolic extract in two concentrations (1 or 2 g/kg) to male Swiss mice exhibited no marked adverse effects, as evidenced by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activity levels. In addition, the extract significantly reduced skin hyperplasia and inflammation induced by UV/sulfuric acid treatment as noted in tissue analyses and decreased protein expression of nuclear proliferation marker (Ki-67). This improvement was associated with a marked decrease in oxidative stress, as indicated by diminished lipid peroxidation levels, and restoration of the activity of endogenous antioxidant enzyme catalase (CAT) to control levels. Our findings demonstrated the potential of Orbea variegata hydroethanolic extract to be considered as a treatment for skin cancer, exhibiting its apparent safety and efficacy in reducing inflammation and carcinogenesis in a UV/sulfuric acid-induced Swiss mouse model, attributed to its phytochemical content and associated antioxidant activities.
Collapse
Affiliation(s)
- Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatimazahra Moukhfi
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ouafae Benkhnigue
- Department of Botany and Plant Ecology, Scientific Institute, Mohammed V University in Rabat, Rabat, Morocco
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital-Casablanca, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Desai VM, Kumbhar P, Kadam AY, Swarup J, Priya S, Jain A, Singhvi G. Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights. Expert Opin Drug Deliv 2024; 21:1213-1233. [PMID: 39136542 DOI: 10.1080/17425247.2024.2392799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Pragati Kumbhar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Akanksha Yogesh Kadam
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Ankit Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| |
Collapse
|
19
|
Sharma P, Kaul S, Jain N, Pandey M, Nagaich U. Enhanced Skin Penetration and Efficacy: First and Second Generation Lipoidal Nanocarriers in Skin Cancer Therapy. AAPS PharmSciTech 2024; 25:170. [PMID: 39044049 DOI: 10.1208/s12249-024-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Skin carcinoma remains one of the most widespread forms of cancer, and its global impact continues to increase. Basal cell carcinoma, melanoma, and squamous cell carcinoma are three kinds of cutaneous carcinomas depending upon occurrence and severity. The invasive nature of skin cancer, the limited effectiveness of current therapy techniques, and constraints to efficient systems for drug delivery are difficulties linked with the treatment of skin carcinoma. In the present era, the delivery of drugs has found a new and exciting horizon in the realm of nanotechnology, which presents inventive solutions to the problems posed by traditional therapeutic procedures for skin cancer management. Lipid-based nanocarriers like solid lipid nanoparticles and nanostructured lipid carriers have attracted a substantial focus in recent years owing to their capability to improve the drug's site-specific delivery, enhancing systemic availability, and thus its effectiveness. Due to their distinct structural and functional characteristics, these nanocarriers can deliver a range of medications, such as peptides, nucleic acids, and chemotherapeutics, via different biological barriers, such as the skin. In this review, an effort was made to present the mechanism of lipid nanocarrier permeation via cancerous skin. In addition, recent research advances in lipid nanocarriers have also been discussed with the help of in vitro cell lines and preclinical studies. Being a nano size, their limitations and toxicity aspects in living systems have also been elaborated.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Upendra Nagaich
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| |
Collapse
|
20
|
Li Y, Li Q, Cao Z, Wu J. Multicenter proteome-wide Mendelian randomization study identifies causal plasma proteins in melanoma and non-melanoma skin cancers. Commun Biol 2024; 7:857. [PMID: 39003418 PMCID: PMC11246481 DOI: 10.1038/s42003-024-06538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
This study addresses the diagnostic and therapeutic challenges in malignant melanoma (MM) and non-melanoma skin cancers (NMSC). We aim to identify circulating proteins causally linked to MM and NMSC traits using a multicenter Mendelian randomization (MR) framework. We utilized large-scale cis-MR to estimate the impact of numerous plasma proteins on MM, NMSC, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC). To ensure robustness, additional analyses like MR Steiger and Bayesian colocalization are conducted, followed by replication through meta-analytical methods. The associations between identified proteins and outcomes are also validated at the tissue level using Transcriptome-Wide Association Study methods. Furthermore, a protein-protein interaction analysis is conducted to explore the relationship between identified proteins and existing cancer medication targets. The MR analysis has identified associations of 13 plasma proteins with BCC, 2 with SCC, and 1 with MM. Specifically, ASIP and KRT5 are associated with BCC, with ASIP also potentially targeting MM. CTSS and TNFSF8 are identified as promising druggability candidates for BCC. This multidimensional approach nominates ASIP, KRT5, CTSS, and TNFSF8 as potential diagnostic and therapeutic targets for skin cancers.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianhuang Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Meng Y, Chen S, Li P, Wang C, Ni X. Tumor Cell Membrane-Encapsulated MLA Solid Lipid Nanoparticles for Targeted Diagnosis and Radiosensitization Therapy of Cutaneous Squamous Cell Carcinoma. Mol Pharm 2024; 21:3218-3232. [PMID: 38885477 DOI: 10.1021/acs.molpharmaceut.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Pengyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
22
|
Lei H, Chen X, Bai R, Wang Q, Xian N, Zhao X, Zhou X, Zheng Y, Wang G. Genetically predicted TWEAK mediates the association between lipidome and Keratinocyte Carcinomas. Skin Res Technol 2024; 30:e13781. [PMID: 38932454 PMCID: PMC11208293 DOI: 10.1111/srt.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown. OBJECTIVE This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators. METHODS A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates. RESULTS MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK. CONCLUSION This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.
Collapse
Affiliation(s)
- Hao Lei
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of OrthodonticsSchool of StomatologyThe Fourth Military Medical UniversityShaanxi ProvinceXi'anChina
| | - Ruimin Bai
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Qian Wang
- Department of DermatologyTangdu HospitalAir Force Military Medical UniversityXi'anShaanxi ProvinceChina
| | - Ningyi Xian
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xinrong Zhao
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xiaolin Zhou
- Department of Dermatologythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Guorong Wang
- The First Department of General Surgerythe Third Affiliated Hospital and Shaanxi Provincial People's HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
23
|
Qureshi SA, Rafiya K, Awasthi S, Jain A, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. Biomembrane camouflaged nanoparticles: A paradigm shifts in targeted drug delivery system. Colloids Surf B Biointerfaces 2024; 238:113893. [PMID: 38631282 DOI: 10.1016/j.colsurfb.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Advanced biomimetic membrane-coated formulations have garnered significant interest from researchers as a promising strategy for targeted drug delivery, site-specific accumulation and heightened therapeutic outcomes. Biomimetic nanotechnology is able to retain the biological properties of the parent cell thus are able to exhibit superior targeting compared to conventional formulations. In this review, we have described different types of cell membrane camouflaged NPs. Mechanism of isolation and coating of the membranes along with the applications of each type of membrane and their mechanism to reach the desired site. Furthermore, a fusion of different membranes in order to prepare hybrid membrane biomimetic NPs which could possess better efficacy is discussed in detail in the review. Later, applications of the hybrid membrane-cloaked NPs along with current development were discussed in detail along with the challenges associated with it. Although membrane-cloaked NPs are currently in the preliminary stage of development, there is a huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
Affiliation(s)
- Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sakshi Awasthi
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Abhishek Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Hosseinzadeh M, Hussain D, Zeki Mahmood FM, A. Alenizi F, Varzeghani AN, Asghari P, Darwesh A, Malik MH, Lee SW. A model for skin cancer using combination of ensemble learning and deep learning. PLoS One 2024; 19:e0301275. [PMID: 38820401 PMCID: PMC11142560 DOI: 10.1371/journal.pone.0301275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 06/02/2024] Open
Abstract
Skin cancer has a significant impact on the lives of many individuals annually and is recognized as the most prevalent type of cancer. In the United States, an estimated annual incidence of approximately 3.5 million people receiving a diagnosis of skin cancer underscores its widespread prevalence. Furthermore, the prognosis for individuals afflicted with advancing stages of skin cancer experiences a substantial decline in survival rates. This paper is dedicated to aiding healthcare experts in distinguishing between benign and malignant skin cancer cases by employing a range of machine learning and deep learning techniques and different feature extractors and feature selectors to enhance the evaluation metrics. In this paper, different transfer learning models are employed as feature extractors, and to enhance the evaluation metrics, a feature selection layer is designed, which includes diverse techniques such as Univariate, Mutual Information, ANOVA, PCA, XGB, Lasso, Random Forest, and Variance. Among transfer models, DenseNet-201 was selected as the primary feature extractor to identify features from data. Subsequently, the Lasso method was applied for feature selection, utilizing diverse machine learning approaches such as MLP, XGB, RF, and NB. To optimize accuracy and precision, ensemble methods were employed to identify and enhance the best-performing models. The study provides accuracy and sensitivity rates of 87.72% and 92.15%, respectively.
Collapse
Affiliation(s)
- Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Dildar Hussain
- Department of AI and Data Science, Sejong University, Seoul, Republic of Korea
| | | | - Farhan A. Alenizi
- Electrical Engineering Department, College of engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Parvaneh Asghari
- Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aso Darwesh
- Department of Information Technology, University of Human Development, Sulaymaniyah, Kurdistan region of Iraq
| | - Mazhar Hussain Malik
- School of Computer Science and Creative Technologies College of Arts, Technology and Environment (CATE) University of the West of England Frenchay Campus, Coldharbour Lane Bristol, Bristol, United Kingdom
| | - Sang-Woong Lee
- Pattern Recognition and Machine Learning Lab, Gachon University, Seongnamdaero, Sujeonggu, Seongnam, Republic of Korea
| |
Collapse
|
25
|
Mo Z, Yuan J, Guan X, Peng J. Advancements in Dermatological Applications of Curcumin: Clinical Efficacy and Mechanistic Insights in the Management of Skin Disorders. Clin Cosmet Investig Dermatol 2024; 17:1083-1092. [PMID: 38765192 PMCID: PMC11100965 DOI: 10.2147/ccid.s467442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin, derived from Curcuma longa (turmeric), exhibits significant potential in dermatology, addressing conditions like atopic dermatitis, psoriasis, chronic wounds, skin cancer, and infections through its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. This review synthesizes evidence on curcumin's mechanisms, including modulation of immune responses and promotion of wound healing, showcasing its efficacy in reducing inflammation, cytokine levels, and enhancing skin barrier functions. Studies highlight curcumin's ability to selectively target tumor cells, suggesting a multifaceted approach to cancer therapy with minimal side effects. Despite promising therapeutic benefits, challenges remain in bioavailability, potency, and targeted delivery, underscoring the need for further research to optimize dosages, delivery methods, and assess long-term safety. The integration of curcumin into dermatological practice requires a balanced consideration of evidence-based efficacy and safety. Curcumin's comprehensive utility in dermatology, coupled with the necessity for advanced scientific exploration, emphasizes the importance of combining traditional knowledge with contemporary research to improve patient care in dermatology. This approach could significantly enhance outcomes for individuals with skin-related conditions, marking curcumin as a versatile and promising agent in the field.
Collapse
Affiliation(s)
- Zhiming Mo
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jiayi Yuan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Xuelian Guan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jianhong Peng
- Department of Internal Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| |
Collapse
|
26
|
Muraro E, Montico B, Lum B, Colizzi F, Giurato G, Salvati A, Guerrieri R, Rizzo A, Comaro E, Canzonieri V, Anichini A, Del Vecchio M, Mortarini R, Milione M, Weisz A, Pizzichetta MA, Simpson F, Dolcetti R, Fratta E, Sigalotti L. Antibody dependent cellular cytotoxicity-inducing anti-EGFR antibodies as effective therapeutic option for cutaneous melanoma resistant to BRAF inhibitors. Front Immunol 2024; 15:1336566. [PMID: 38510242 PMCID: PMC10950948 DOI: 10.3389/fimmu.2024.1336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Benedict Lum
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Aurora Rizzo
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Comaro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Pathology Unit 1, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Maria Antonietta Pizzichetta
- Division of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Dermatology, University of Trieste, Trieste, Italy
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
27
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
28
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Chu Z, Li Z, Yong H, Che D, Li B, Yan C, Zhou T, Wang X, Feng Y, Guo K, Geng S. Enhanced gene transfection and induction of apoptosis in melanoma cells by branched poly(β-amino ester)s with uniformly distributed branching units. J Control Release 2024; 367:197-208. [PMID: 38246205 DOI: 10.1016/j.jconrel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(β-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingjie Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuqing Feng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
30
|
Kim MJ, Kulkarni V, Goode MA, Hernandez J, Graham S, Sivesind TE, Manchadi ML. Utilizing systems genetics to enhance understanding into molecular targets of skin cancer. Exp Dermatol 2024; 33:e15043. [PMID: 38459629 PMCID: PMC11018140 DOI: 10.1111/exd.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Despite progress made with immune checkpoint inhibitors and targeted therapies, skin cancer remains a significant public health concern in the United States. The intricacies of the disease, encompassing genetics, immune responses, and external factors, call for a comprehensive approach. Techniques in systems genetics, including transcriptional correlation analysis, functional pathway enrichment analysis, and protein-protein interaction network analysis, prove valuable in deciphering intricate molecular mechanisms and identifying potential diagnostic and therapeutic targets for skin cancer. Recent studies demonstrate the efficacy of these techniques in uncovering molecular processes and pinpointing diagnostic markers for various skin cancer types, highlighting the potential of systems genetics in advancing innovative therapies. While certain limitations exist, such as generalizability and contextualization of external factors, the ongoing progress in AI technologies provides hope in overcoming these challenges. By providing protocols and a practical example involving Braf, we aim to inspire early-career experimental dermatologists to adopt these tools and seamlessly integrate these techniques into their skin cancer research, positioning them at the forefront of innovative approaches in combating this devastating disease.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Science Center School of Medicine, Memphis, Tennessee, USA
| | | | - Micah A Goode
- University of Tennessee Health Science Center School of Medicine, Memphis, Tennessee, USA
| | - Jacob Hernandez
- University of Tennessee Health Science Center School of Medicine, Memphis, Tennessee, USA
| | - Sean Graham
- University of Tennessee Health Science Center School of Medicine, Memphis, Tennessee, USA
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
31
|
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024; 16:223. [PMID: 38399277 PMCID: PMC10892933 DOI: 10.3390/pharmaceutics16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
- Research Institute for Renewable Energies, Politehnica University Timișoara, Gavril Muzicescu 138, 300501 Timișoara, Romania
| |
Collapse
|
32
|
Domka W, Bartusik-Aebisher D, Mytych W, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers (Basel) 2024; 16:645. [PMID: 38339396 PMCID: PMC10854993 DOI: 10.3390/cancers16030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Wiktoria Mytych
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
33
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|