1
|
Li Y, Ye Z, Ye H, Liang W, Pan Z, Cao G, Zeng Y, Dong J, Ran Z, Tang J, Li X, Cheng X, He Y, Yan W, Liu X. Chondroitin sulfate-based dissolvable microneedles loaded with NIR-II photothermal and natural anticancer agents for synergistic melanoma therapy. Int J Biol Macromol 2025; 300:140223. [PMID: 39855503 DOI: 10.1016/j.ijbiomac.2025.140223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Melanoma is characterized by its aggressiveness, high metastatic potential, and numerous mutations, which limit the effectiveness of current treatments. To address this issue, we developed a dissolvable microneedle (MN) system composed of poly(2-ethyl-2-oxazoline) (PEtOz) and chondroitin sulfate (CS). This MN system was loaded with liposomes containing both a NIR-II photothermal small molecule (IRLy) and the natural anticancer agent Gambogic acid (GA), forming Lip(IRLy + GA) MNs. The integration of the dissolvable microneedle with drug-loaded liposomes aligns with the mechanical properties and skin penetration efficiency required for effective drug delivery. It enables minimally invasive, painless, and precise administration of IRLy and GA. Under NIR-II 1064 nm laser irradiation, Lip(IRLy + GA) effectively inhibited melanoma by disrupting blood vessels, inducing apoptosis, and altering mitochondrial membrane potential. In a subcutaneous melanoma (A375) model in nude mice, the combination of Lip(IRLy + GA) and laser treatment demonstrated a synergistic effect, enhancing both photothermal and chemotherapeutic outcomes. This research presents a promising strategy that combines NIR-II photothermal agents with natural chemotherapeutic drugs and highlights the potential of microneedles in combination therapies for superficial skin cancers like melanoma.
Collapse
Affiliation(s)
- Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Jiapeng Dong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Cheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Yan
- Oncology department, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li X, Wang Y, Ren M, Liu Q, Li J, Zhang L, Yao S, Tang L, Wen G, An J, Jin H, Tuo B. The role of chloride intracellular channel 4 in tumors. Cancer Cell Int 2025; 25:118. [PMID: 40140845 PMCID: PMC11948840 DOI: 10.1186/s12935-025-03737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Tumors are among the most predominant health problems in the world, and the annual incidence of cancer is increasing globally; therefore, there is an urgent need to identify effective therapeutic targets. Chloride intracellular channel 4 (CLIC4) belongs to the family of chloride intracellular channels (CLICs), which are widely expressed in various tissues and organs, such as the brain, lung, pancreas, colorectum, and ovary, and play important roles in promoting apoptosis, promoting angiogenesis, maintaining normal proliferation of endothelial cells, and regulating the assembly and reconstruction of the cytoskeleton. The expression and function of CLIC4 in tumors varies. It has been reported that CLIC4 is low expressed in gastric cancer, skin cancer and prostate cancer, suggesting a tumor suppressor role. Interestingly, CLIC4 is overexpressed in pancreatic, ovarian and breast cancers, indicating a cancer-promoting role. CLIC4 expression is dysregulated in some solid tumors, which may be because CLIC4 is involved in the growth, migration or invasion of some cancer cells through various mechanisms. Regulation of CLIC4 expression may be a potential therapeutic strategy for some tumors. CLIC4 may be a promising therapeutic target and a biomarker for some cancers. In this study, we review the role of CLIC4 in several cancers and its value in the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Minmin Ren
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Nursing School of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Lulu Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
3
|
Li X, Yang S, Du Z, Xie W, Zhu M, Han L, Zhou Q. Cathepsins and Skin Cancer (Malignant Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma): Insight From Genetic Correlation and Mendelian Randomization. Clin Cosmet Investig Dermatol 2025; 18:553-566. [PMID: 40094023 PMCID: PMC11910913 DOI: 10.2147/ccid.s502013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Background Multiple studies have indicated that cathepsins (Cats) play a crucial role in the development and progression of skin cancer. However, most of these studies are observational and may be influenced by external variables, necessitating further research to establish causal relationships. Methods We conducted a two-sample, two-way Mendelian randomization (MR) study utilizing pooled data from genome-wide association studies (GWAS) to evaluate the causal association between 9 Cats (Cat-B, E, F, G, H, L2, O, S, and Z) and 3 types of skin cancer, including malignant melanoma (MM), basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Our analysis employed several methods, including inverse variance weighting (IVW), MR-Egger, weighted median, Cochran's Q test, the MR-Egger intercept test, and leave-one-out sensitivity analysis. Furthermore, bioinformatics analysis of loci linked to Cats and skin cancer was performed to explore potential molecular mechanisms. Results Genetically predicted increases in Cat-F and Cat-O levels were found to be correlated with a higher risk of BCC, while increased levels of Cat-L2 and Cat-O were associated with a reduced incidence of SCC. Bioinformatics analysis suggested that differentially expressed genes located near Cats-related loci could potentially influence BCC and SCC by modulating relevant signaling pathways and the tumor microenvironment. Conclusion Our research indicated a causal link between Cats and skin cancer. By conducting a bioinformatic analysis of genetic loci related to Cats and skin cancer, we were able to gain a better understanding of the potential molecular mechanisms driving this association. This research can provide valuable insights into the diagnosis and treatment of skin cancer.
Collapse
Affiliation(s)
- Xianglong Li
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shaofeng Yang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhong Du
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wanying Xie
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Man Zhu
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ling Han
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qingyu Zhou
- Department of Medical and Radiation Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
4
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
5
|
Hussein SA, Ababneh NA, Tarawneh N, Ismail MA, Awidi A, Abdalla S. Antitumor Effects of Quercetin and Luteolin in A375 Cutaneous Melanoma Cell Line Are Mediated by Upregulation of P-ERK, c-Myc, and the Upstream GPER. Life (Basel) 2025; 15:417. [PMID: 40141761 PMCID: PMC11943993 DOI: 10.3390/life15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive and fatal malignancy among other skin cancers and its incidence has risen steadily recently around the world. Hormone-related therapy, particularly estrogen (E2) has been used as a prospective strategy for CM treatment. Quercetin and luteolin are flavonoids with antitumor effects against a wide range of cancers including CM. However, the underlying mechanism of their actions through GPER in CM is not fully understood. We examined the anti-tumor effects of quercetin and luteolin on the A375 CM cell line through activation of the G-protein coupled estrogen receptor (GPER). MTT assay was performed to assess the impact of flavonoids on cell viability. Apoptosis and cell cycle were studied by flow cytometry. Cell migration was evaluated by transwell assay. GPER expression and the effect of the flavonoids on the key signaling proteins were confirmed by immunofluorescence staining and Western blot, respectively. Results showed that quercetin and luteolin inhibited proliferation and migration, induced apoptosis, and blocked the cell cycle at S and G2/M in A375 cells. Immunofluorescence and immunoblotting data demonstrated the presence of GPER in this cell line and the two flavonoids enhanced its expression except at the high concentration of 100 µM. Quercetin and luteolin enhanced P-ERK and c-Myc expression, an effect abolished by the GPER antagonist G15, confirming GPER-mediated signaling. In conclusion, quercetin and luteolin exhibited anti-tumor effects on A375 melanoma cells via GPER activation, suggesting their potential as anti-melanoma therapeutics.
Collapse
Affiliation(s)
- Shaymaa A. Hussein
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan;
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (N.A.A.); (M.A.I.)
| | - Nidaa A. Ababneh
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (N.A.A.); (M.A.I.)
| | - Noor Tarawneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Mohammad A. Ismail
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (N.A.A.); (M.A.I.)
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abdalla Awidi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (N.A.A.); (M.A.I.)
- Hemostasis and Thrombosis Laboratory, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
6
|
Chauhan M, Chandra J, Gupta G, Ramaiah R, Hani U, Kesharwani P. Harnessing phytoconstituents in ethosomes: A new frontier in skin disorder management. Int J Pharm 2025; 671:125273. [PMID: 39870257 DOI: 10.1016/j.ijpharm.2025.125273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The rising incidence of skin disorders has necessitated the exploration of innovative therapeutic modalities that harness the beneficial properties of natural compounds. Phytoconstituents, renowned for their diverse pharmacological attributes, present considerable promise in the management of various dermatological conditions. This review delineates the integration of phytoconstituents into ethosomal formulations, which are advanced lipid-based carriers specifically designed to enhance transdermal delivery. We discuss the advantages conferred by ethosomes, including their capacity to improve the stability and bioavailability of phytochemicals, facilitate deeper skin penetration, and provide controlled release profiles. Recent advancements in the formulation of ethosomes encapsulating a variety of phytoconstituents are highlighted, with a focus on their physicochemical properties, therapeutic efficacy, and safety profiles. Furthermore, the review examines the mechanisms by which ethosomes enhance the delivery of bioactive compounds to targeted skin layers, particularly in the context of treating conditions such as acne, eczema, and psoriasis. Challenges associated with formulation stability and scalability are also addressed, along with potential future research directions in this domain. By synthesizing current knowledge and identifying existing gaps, this article aims to provide a comprehensive overview of phytoconstituent-based ethosomes as a promising strategy for the development of effective and safe topical therapies for skin disorders. Ultimately, this review underscores the potential of these innovative formulations to improve patient outcomes and contribute significantly to the advancement of dermatological treatment options.
Collapse
Affiliation(s)
- Meghna Chauhan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramasubbamma Ramaiah
- Department of Medical and Surgical Nursing, College of Nursing, Khamish Mushait, Female Wing, Mahala Road, King Khalid University, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy King Khalid University, Abha, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Moni SS, Moshi JM, Matou-Nasri S, Alotaibi S, Hawsawi YM, Elmobark ME, Hakami AMS, Jeraiby MA, Sulayli AA, Moafa HN. Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems. Pharmaceutics 2025; 17:296. [PMID: 40142960 PMCID: PMC11945159 DOI: 10.3390/pharmaceutics17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Jobran M. Moshi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, Jazan 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia;
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Shmoukh Alotaibi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Mohammed A. Jeraiby
- Department of Basic Medical Science, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ahmed A. Sulayli
- Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan Health Cluster, Jazan 82734, Saudi Arabia;
| | - Hassan N. Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Prajapati MK, Mittal A, Panda P. Phytoflavonoids as alternative therapeutic effect for melanoma: Integrative Network pharmacology, molecular dynamics and drug-likeness profiling for lead discovery. Comput Biol Chem 2025; 117:108390. [PMID: 40056707 DOI: 10.1016/j.compbiolchem.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Melanoma, an aggressive skin cancer, poses significant therapeutic challenges due to its resistance to conventional therapies and high metastatic potential. From this perspective, phytoflavonoids from different medicinal and aromatic plants gained attention due to their diverse multimodal anticancer effects with higher antioxidant and anti-inflammatory properties. This study explores phytoflavonoid potency against melanoma via a computer-aided drug design (CADD) platform. Using the core moiety of flavonoids (flavan), four most putative targets, such as cyclin-dependent kinases 1 and 5 (CDK1, CDK5), cell division cycles 25B and 225 C (CDC25B, and CDC225C), have been identified through a network pharmacology approach using TNMplot datasets (GenChip and RNA sequence). Further, 44 phytoflavonoids were selected from extensive literature, and molecular docking studies were carried out against four targets along with standard drugs using AutoDock 4.2 software. Subsequently, physicochemical, toxicity, pharmacokinetics, and drug-ability profiles of phytoflavonoids were predicted. Based on potency and drug-ability, we have selected 'CDK1-naringenin' with the standard drug complex, 'CDK1-dinaciclib,' for molecular dynamic simulation at 100 nanoseconds using GROMACS 2020 software. Based on potency (average docking score: 8.35 kcal/mol.), physicochemical properties (obeyed Lipinski rule of five), toxicity (class-IV), fifty percent lethal dose (2000 mg/kg), bioavailability (0.55), drug-likeness score (0.82), along with ideal pharmacokinetics profiles and higher protein-ligand stability, naringenin is considered as a potential and non-toxic anticancer candidate to be used for melanoma as alternative or complementary agent. The integrative and systematic analyses not only highlight the potential of phytoflavonoids but also select the potential lead from the library within limited resources to accelerate the current anticancer drug discovery process.
Collapse
Affiliation(s)
- Manoj Kumar Prajapati
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India; Kashi Institute of Pharmacy, Mirzamurad, Varanasi, Uttar Pradesh 221307, India.
| | - Abhilasha Mittal
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Pritipadma Panda
- School of Pharmacy, Kalinga Institute of Industrial Technology Deemed to be University, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
9
|
El-Arabey AA, Ghramh HA. Bee venom: Yesterday's enemy becomes modern medicine for skin cancer. Exp Cell Res 2025; 445:114435. [PMID: 39923827 DOI: 10.1016/j.yexcr.2025.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Malignant melanoma is one of the most lethal human malignancies, particularly when it spreads from its initial site in the skin to distant locations with few therapeutic options. While a range of treatment approaches exist, such as chemotherapy, radiation, immunotherapy, and targeted therapy, they typically fail to treat skin cancer, particularly in its late stages. The complex cellular and molecular mechanisms that drive melanoma growth and metastatic dissemination are both varied and complicated, posing significant challenges to the development of effective treatment approaches. As the incidence and burden of this malignancy increase, there is an urgent need for innovative therapeutic techniques. Therefore, it is vital to research alternate therapy options. Several research undertaken in recent years have found that bee venom influences a variety of cancers. The more research into using bee venom to cure skin cancer, the less attention it receives. In this context, the purpose of this proposal is to review a comprehensive assessment of the clinical impact of bee venom against skin cancer, as well as to highlight challenges and excitement down the road.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hamed A Ghramh
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
10
|
Ali MS, Abdullah Almoyad MA, Wahab S, Sahebkar A, Gorain B, Kaur H, Kesharwani P. Recent advances in lipid-based nanocarriers for advanced skin cancer therapy. Int J Pharm 2025; 670:125203. [PMID: 39798625 DOI: 10.1016/j.ijpharm.2025.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Skin cancer is prevalent worldwide,surpassing all other forms of cancer and it does not respond effectively to conventional formulations. Treatment of skin cancer further require deeper permeation into the skin. Therefore, researchers are working on different types of nanoformulations for delivering therapeutic agents to the site of action. Amongst, lipid-based nanoparticles have shown potential for the efficient delivery of drugs to skin tumors, where properties like biocompatible, non-toxic, and biodegradable have attracted researcher concern. The literature revealed that these lipid-mediated nanocarriers with a size < 100 nm treats skin cancer efficiently and surmount resistance by increasing the solubility and stability of the hydrophobic chemotherapeutics. These lipid nanocarriers are safer for topical application and facilitate permeation through the skin by interacting with the lipid bilayer membranes, resulting in rearrangement of them to promote penetration into the cells. This review discussed the research done so far to treat skin cancer with lipid-based nanocarriers. These nanocarriers can be effective tools, which can be explored and established further to combat the increasing incidences of skin cancer in the future.
Collapse
Affiliation(s)
- Mohd Shoab Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062 India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Khamis Mushyt, PO Box. 4536, ZIP 61412, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529 Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Harleen Kaur
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062 India.
| |
Collapse
|
11
|
Almuqbil RM, Aldhubiab B. Bioadhesive Nanoparticles in Topical Drug Delivery: Advances, Applications, and Potential for Skin Disorder Treatments. Pharmaceutics 2025; 17:229. [PMID: 40006596 PMCID: PMC11860006 DOI: 10.3390/pharmaceutics17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Skin disorders are the fourth most common cause of all diseases, which affect nearly one-third of the world's population. Topical drug delivery can be effective in treating a range of skin disorders, including microbial infections, skin cancer, dermatitis, burn injury, wounds, and psoriasis. Bioadhesive nanoparticles (BNPs) can serve as an efficient topical drug delivery system as they can serve dual purposes as bioadhesives and nanocarriers, which can mediate targeted drug delivery, prolong retention time, and deepen drug penetration through skin layers. There is an increasing demand for BNP-based applications in medicine because of their various advantages, including biodegradability, flexibility, biocompatibility, and enhanced adhesive strength. A number of BNPs have already been developed and evaluated as potential topical drug delivery systems. In addition, a range of studies have already been carried out to evaluate the potential of BNPs in the treatment of various skin disorders, including atopic dermatitis, irritant contact dermatitis, skin cancer, psoriasis, microbial infections, wounds, and severe burn injuries. This review article is timely and unique, because it provides an extensive and unique summary of the recent advances of BNPs in the treatment of wide-ranging skin disorders. Moreover, this review also provides a useful discussion on the bioadhesion mechanism and various biopolymers that can be used to prepare BNPs.
Collapse
Affiliation(s)
- Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
12
|
Niu L, Liu S, Shen J, Chang J, Li X, Zhang L. ATF3 regulates CDC42 transcription and influences cytoskeleton remodeling, thus inhibiting the proliferation, migration and invasion of malignant skin melanoma cells. Melanoma Res 2025; 35:37-49. [PMID: 39591541 DOI: 10.1097/cmr.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cutaneous malignant melanoma (CMM) is one of the most aggressive and lethal types of skin cancer. Cytoskeletal remodeling is a key factor in the progression of CMM. Previous research has shown that activating transcription factor 3 (ATF3) inhibits metastasis in bladder cancer by regulating actin cytoskeleton remodeling through gelsolin. However, whether ATF3 plays a similar role in cytoskeletal remodeling in CMM cells remains unknown. Various gene and protein expression analyses were performed using techniques such as reverse transcription quantitative PCR, western blot, immunofluorescent staining, and immunohistochemical staining. CMM viability, migration, and invasion were examined through cell counting kit-8 and transwell assays. The interactions between cell division cycle 42 (CDC42) and ATF3 were investigated using chromatin immunoprecipitation and dual-luciferase reporter assays. CDC42 was upregulated in CMM tissues and cells. Cytoskeletal remodeling of CMM cells, as well as CMM cell proliferation, migration, and invasion, were inhibited by CDC42 or ATF3. ATF3 targeted the CDC42 promoter region to regulate its transcriptional activity. ATF3 suppresses cytoskeletal remodeling in CMM cells, thereby inhibiting CMM progression and metastasis through CDC42. This research may provide a foundation for using ATF3 as a therapeutic target for CMM.
Collapse
Affiliation(s)
- Liang Niu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital
| | - Jiuxiao Shen
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Jin Chang
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Ling Zhang
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| |
Collapse
|
13
|
Noor F, Shahid S, Fatima M, Haider SZ, Al Shehri ZS, Alshehri FF, Rehman A. Bioinformatics and immunoinformatics approaches in the design of a multi-epitope vaccine targeting CTLA-4 for melanoma treatment. Mol Divers 2025:10.1007/s11030-025-11108-7. [PMID: 39873886 DOI: 10.1007/s11030-025-11108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease. This research provides a thorough examination of the design, optimization, and validation of a multi-epitope vaccine (MEV) construct. Using computational and in silico methods, the study specifically targets key immune receptors including MHC-I, MHC-I, and TLR4. The MEV construct was codon-optimized and effectively cloned into the E. coli pET-28a(+) vector to improve expression efficiency. To assess the stability and flexibility of the vaccine constructs in complex with their target receptors, molecular dynamics (MD) simulations were performed. The findings showed that the MHC-I-MEV complex demonstrated the greatest stability, with the MHC-II-MEV and TLR4-MEV complexes following instability. Immune simulation analyses revealed robust immune responses, evidenced by significant antibody production and the activation of cell mediated immune responses. These results highlight the MEV construct's potential as a versatile vaccine candidate, capable of eliciting strong and diverse immune responses. The integration of structural and energetic analyses, combined with immune simulation, provides a solid foundation for further experimental validation and therapeutic development.
Collapse
Affiliation(s)
- Fatima Noor
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 35000, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 35000, Pakistan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, 35000, Pakistan
| | - Muskan Fatima
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 35000, Pakistan
| | - Syed Zeeshan Haider
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 35000, Pakistan
| | - Zafer Saad Al Shehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 19257, Dawadmi, Saudi Arabia
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 19257, Dawadmi, Saudi Arabia
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Zhang X, Chen T, Zhang F, Shi H, Li X, Wang Z, Wang D, Hou C. METTL1 coordinates cutaneous squamous cell carcinoma progression via the m7G modification of the ATF4 mRNA. Cell Death Discov 2025; 11:27. [PMID: 39870616 PMCID: PMC11772585 DOI: 10.1038/s41420-025-02304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood. In this study, we observed conspicuously elevated levels of METTL1 in cSCC tumors and cell lines. Inhibiting METTL1 led to reduced survival, migration, invasion, and xenograft tumor growth in cSCC cells. Mechanistically, through a combination of RNA sequencing, m7G methylated immunoprecipitation (MeRIP)-qPCR, and mRNA stability assays, we discovered that METTL1 is responsible for the m7G modification of ATF4 mRNA, leading to increased expression of ATF4. Importantly, we demonstrated that this modification is dependent on the methyltransferase activity of METTL1. Additionally, we observed a positive association between ATF4 expression and METTL1 levels in cSCC tumors. Intriguingly, restoring ATF4 expression in cSCC cells not only promoted glycolysis but also reversed the anti-tumor effects of METTL1 knockdown. In conclusion, our results underscore the critical role of METTL1 and m7G modification in cSCC tumorigenesis, suggesting a promising target for future cSCC therapies.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tong Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fanrong Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Huanhuan Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiang Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhijuan Wang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2025; 669:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had an optimal particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
16
|
Park SY, Ayana G, Wako BD, Jeong KC, Yoon SD, Choe SW. Vision Transformers for Low-Quality Histopathological Images: A Case Study on Squamous Cell Carcinoma Margin Classification. Diagnostics (Basel) 2025; 15:260. [PMID: 39941191 PMCID: PMC11817517 DOI: 10.3390/diagnostics15030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Squamous cell carcinoma (SCC), a prevalent form of skin cancer, presents diagnostic challenges, particularly in resource-limited settings with a low-quality imaging infrastructure. The accurate classification of SCC margins is essential to guide effective surgical interventions and reduce recurrence rates. This study proposes a vision transformer (ViT)-based model to improve SCC margin classification by addressing the limitations of convolutional neural networks (CNNs) in analyzing low-quality histopathological images. Methods: This study introduced a transfer learning approach using a ViT architecture customized with additional flattening, batch normalization, and dense layers to enhance its capability for SCC margin classification. A performance evaluation was conducted using machine learning metrics averaged over five-fold cross-validation and comparisons were made with the leading CNN models. Ablation studies have explored the effects of architectural configuration on model performance. Results: The ViT-based model achieved superior SCC margin classification with 0.928 ± 0.027 accuracy and 0.927 ± 0.028 AUC, surpassing the highest performing CNN model, InceptionV3 (accuracy: 0.86 ± 0.049; AUC: 0.837 ± 0.029), demonstrating robustness of ViT over CNN for low-quality histopathological images. Ablation studies have reinforced the importance of tailored architectural configurations for enhancing diagnostic performance. Conclusions: This study underscores the transformative potential of ViTs in histopathological analysis, especially in resource-limited settings. By enhancing diagnostic accuracy and reducing dependence on high-quality imaging and specialized expertise, it presents a scalable solution for global cancer diagnostics. Future research should prioritize optimizing ViTs for such environments and broadening their clinical applications.
Collapse
Affiliation(s)
- So-yun Park
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea;
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea;
| | - Gelan Ayana
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea;
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma 378, Ethiopia
| | - Beshatu Debela Wako
- Center of Biomedical Engineering, Jimma University Medical Center, Jimma 378, Ethiopia;
| | - Kwangcheol Casey Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Soon-Do Yoon
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Se-woon Choe
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea;
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Ambagaspitiya SS, Appuhamillage GA, Wimalawansa SJ. Impact of Vitamin D on Skin Aging, and Age-Related Dermatological Conditions. FRONT BIOSCI-LANDMRK 2025; 30:25463. [PMID: 39862075 DOI: 10.31083/fbl25463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025]
Abstract
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases. Intrinsic factors associated with advanced age gradually degrade the dermal collagen matrix, resulting in fine wrinkles and reduced elasticity; this is accelerated in post-menopausal women due to estrogen deficiency. In contrast, extrinsic factors associated with advanced age, primarily caused by exposure to ultraviolet (UV) radiation, lead to coarse wrinkles, solar elastosis, hyperkeratosis, irregular pigmentation, and skin cancers. UVB radiation, while contributing to skin photo-aging, also induces the cutaneous synthesis of vitamin D. Vitamin D, in turn, protects the skin from oxidative stress, inflammation, and DNA damage, thereby delaying both chronological and photo-aging. Moreover, research has demonstrated an association between lower vitamin D levels and a higher prevalence of certain cutaneous diseases. This review explores and summarizes the critical role of vitamin D in skin aging and age-related skin diseases. The data presented highlight the importance of maintaining vitamin D adequacy throughout life.
Collapse
Affiliation(s)
- Sankalya S Ambagaspitiya
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | - Gayan A Appuhamillage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | | |
Collapse
|
18
|
Wang M, Gao X, Zhang L. Recent global patterns in skin cancer incidence, mortality, and prevalence. Chin Med J (Engl) 2025; 138:185-192. [PMID: 39682020 PMCID: PMC11745855 DOI: 10.1097/cm9.0000000000003416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Skin cancer is a common skin disease whose incidence and mortality rates have been showing yearly increases. In this report, we update the most recent data on skin cancer as obtained from GLOBOCAN 2022. METHODS The incidence and mortality rates of skin cancer (melanoma of skin and non-melanoma skin cancer) in GLOBOCAN 2022 were reviewed. These data were analyzed and the characteristics of incidence and mortality across five continents and top five countries and regions in each continent are presented. In addition, correlations between Human Development Index (HDI) and age-standardized incidence and mortality rates of these two skin cancers are described. RESULTS The GLOBOCAN 2022 data indicated that melanoma was the 17th most common cancer. An estimated 331,722 people were diagnosed with melanoma globally and approximately 58,667 died from this disease. For non-melanoma skin cancer, it ranks as the 5th most common cancer, and an estimated 1,234,533 people were diagnosed with non-melanoma skin cancer globally and approximately 69,416 died from this disease. The incidence of skin cancer varies across geographic regions and countries, with a predominance observed in Oceania, North America, and Europe. Australia was ranked first in terms of incidence, while incidence rates in Africa and Asia were very low. Despite these regional differences in incidence, there was little geographic variation in mortality rates. Currently, the number of deaths from non-melanoma skin cancer exceeds that of melanoma of skin. HDI was positively associated with the incidence of both types of skin cancers, with a positive correlation obtained between HDI and mortality from melanoma of skin and a negative correlation between HDI and mortality from non-melanoma skin cancer. CONCLUSIONS Skin cancer remains a major disease burden worldwide. Substantial variations are observed across countries and regions. Further research on skin cancer will be required to provide a rationale for more effective preventions and treatments of this condition.
Collapse
Affiliation(s)
- Mingyue Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| | - Li Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, Liaoning 110001, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, Liaoning 110001, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, Liaoning 110001, China
| |
Collapse
|
19
|
Mohamed HR, Hemdan SHA, El-Sherif AA. Y 2O 3NPs induce selective cytotoxicity, genomic instability, oxidative stress and ROS mediated mitochondrial apoptosis in human epidermoid skin A-431 Cancer cells. Sci Rep 2025; 15:1543. [PMID: 39789066 PMCID: PMC11718274 DOI: 10.1038/s41598-024-82376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Yttrium oxide nanoparticles (Y2O3NPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of Y2O3NPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of Y2O3NPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects. Cell viability and apoptosis induction were assessed using the Sulforhodamine B and chromatin diffusion assay, respectively. Reactive oxygen species (ROS) level, mitochondrial membrane potential integrity, oxidative stress markers and expression level of apoptotic and mitochondrial genes were also estimated. Our findings highlight the selective and significant cytotoxicity of Y2O3NPs against human epidermoid A-431 cancer cells. Notably, exposure to five Y2O3NPs concentrations (0.1, 1, 10, 100 and 1000 µg/ml) resulted in a high concentration-dependent reduction in cell viability and a corresponding increase in cell death observed 72 h post-treatment specifically in A-431 cancer cells, while normal skin fibroblast (HSF) cells exhibited minimal toxicity. When A-431 cancer cells were treated with the half-maximal inhibitory concentration (IC50) of Y2O3NPs for 72 h, a significant increase in ROS generation was noted. This led to oxidative stress, along with severe damage to genomic DNA and mitochondrial membrane potential, triggering substantial apoptosis. Furthermore, a concurrent significant upregulation of apoptotic p53 and mitochondrial ND3 genes was observed, coupled with a notable decrease in the anti-apoptotic Bcl2 gene expression.Overall, Y2O3NPs demonstrate considerable promise as a therapeutic agent for skin epidermoid cancer due to their ability to selectively target and induce cytotoxic effects in A-431 cancer cells, all while causing minimal harm to normal HSF cells. This selective cytotoxicity appears to be associated with Y2O3NPs' ability to induce excessive ROS production and subsequent oxidative stress, leading to significant genomic DNA fragmentation, loss of mitochondrial permeability, and alterations in apoptotic and mitochondrial genes' expression, ultimately promoting apoptosis in A-431 cancer cells. These findings establish a foundation for further research into the utilization of Y2O3NPs in targeted cancer therapies and underscore the necessity for ongoing investigation into their safety and efficacy in clinical applications.
Collapse
Affiliation(s)
- Hanan Rh Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shrouk H A Hemdan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Alotaibi A, AlSaeed D. Skin Cancer Detection Using Transfer Learning and Deep Attention Mechanisms. Diagnostics (Basel) 2025; 15:99. [PMID: 39795627 PMCID: PMC11720014 DOI: 10.3390/diagnostics15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Early and accurate diagnosis of skin cancer improves survival rates; however, dermatologists often struggle with lesion detection due to similar pigmentation. Deep learning and transfer learning models have shown promise in diagnosing skin cancers through image processing. Integrating attention mechanisms (AMs) with deep learning has further enhanced the accuracy of medical image classification. While significant progress has been made, further research is needed to improve the detection accuracy. Previous studies have not explored the integration of attention mechanisms with the pre-trained Xception transfer learning model for binary classification of skin cancer. This study aims to investigate the impact of various attention mechanisms on the Xception model's performance in detecting benign and malignant skin lesions. Methods: We conducted four experiments on the HAM10000 dataset. Three models integrated self-attention (SL), hard attention (HD), and soft attention (SF) mechanisms, while the fourth model used the standard Xception without attention mechanisms. Each mechanism analyzed features from the Xception model uniquely: self-attention examined the input relationships, hard-attention selected elements sparsely, and soft-attention distributed the focus probabilistically. Results: Integrating AMs into the Xception architecture effectively enhanced its performance. The accuracy of the Xception alone was 91.05%. With AMs, the accuracy increased to 94.11% using self-attention, 93.29% with soft attention, and 92.97% with hard attention. Moreover, the proposed models outperformed previous studies in terms of the recall metrics, which are crucial for medical investigations. Conclusions: These findings suggest that AMs can enhance performance in relation to complex medical imaging tasks, potentially supporting earlier diagnosis and improving treatment outcomes.
Collapse
Affiliation(s)
- Areej Alotaibi
- College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
21
|
Pandey S, Yadav P. Liquid biopsy in cancer management: Integrating diagnostics and clinical applications. Pract Lab Med 2025; 43:e00446. [PMID: 39839814 PMCID: PMC11743551 DOI: 10.1016/j.plabm.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Liquid biopsy is an innovative, minimally invasive diagnostic tool revolutionizing cancer management by enabling the detection and analysis of cancer-related biomarkers from bodily fluids such as blood, urine, or cerebrospinal fluid. Unlike traditional tissue biopsies, which require invasive procedures, liquid biopsy offers a more accessible and repeatable method for tracking cancer progression, detecting early-stage cancers, and monitoring therapeutic responses. The technology primarily focuses on analyzing circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and other cancer-derived genetic materials. These biomarkers provide critical information on tumor heterogeneity, mutation profiles, and potential drug resistance. In clinical practice, liquid biopsy has demonstrated its utility in identifying actionable mutations, guiding personalized treatment strategies, and assessing minimal residual disease (MRD). While liquid biopsy holds immense promise, challenges related to its sensitivity, specificity, and standardization remain. Efforts to optimize pre-analytical and analytical processes, along with the establishment of robust regulatory frameworks, are crucial for its widespread clinical adoption. This abstract highlights the transformative potential of liquid biopsy in cancer diagnosis, prognosis, and treatment monitoring, emphasizing its role in advancing personalized oncology. Further research, clinical trials, and regulatory harmonization will be vital in realizing its full potential in precision cancer care.
Collapse
Affiliation(s)
| | - Preeti Yadav
- Corresponding author. Department of Pharmaceutical Sciences School of Pharmaceutical Science Babasaheb Bhimrao Ambedkar University Vidya Vihar, Raibareli Road, 226 025, Lucknow, India.
| |
Collapse
|
22
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03722-3. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
23
|
Girigoswami A, Deepika B, Udayakumar S, Janani G, Mercy DJ, Girigoswami K. Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity. BMC Pharmacol Toxicol 2024; 25:101. [PMID: 39736727 DOI: 10.1186/s40360-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study. METHODS We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity. In vitro biocompatibility was assessed using fibroblasts and undifferentiated rat phaeochromocytoma cells, and in vivo, biocompatibility was estimated using haemolysis assay and zebrafish embryo development. RESULTS The results demonstrated high biocompatibility of the as-synthesized ZnO-NFs up to a dose of 200 µg/ml. In vitro anticancer activity was evaluated using adherent (A375) and non-adherent (Dalton's Lymphoma Ascites, DLA) cancer cell lines. The results indicated that the ZnO-NFs significantly killed the cancer cells in a dose-dependent way, showing an extraordinary effect on DLA cells. The anti-amyloid activity in vitro was explored using a spectrum of assays that were hallmarks in anti-amyloid studies like ThT fluorescence assay, DLS, turbidity assay, atomic force microscopy (AFM), and SEM analysis. Excellent anti-amyloid activity was observed in vitro at 50 µg/ml of ZnO-NFs. CONCLUSION We can conclude from the above results that the as-synthesized ZnO-NFs have a dual role as an anticancer as well as an anti-amyloid agent. In the future, animal models can be used to study the efficacy of the ZnO-NFs in cancer inhibition and amyloid degradation.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Devadass Jessy Mercy
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602101, India.
| |
Collapse
|
24
|
Chauhan A, Gangopadhyay S, Koshta K, Singh D, Srivastava V. A Simplified Protocol for Isolation and Culture of Keratinocyte Stem Cells from Neonatal Mice. Methods Mol Biol 2024. [PMID: 39714584 DOI: 10.1007/7651_2024_586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Isolation of primary keratinocyte stem cells (KSCs) from neonatal mouse epidermis is essential for studying skin physiology and related disorders. Traditional methods often struggle to balance keratinocyte proliferation and differentiation, and although recent advancements using low-calcium culture conditions have improved these techniques, protocols remain scattered. This study presents a streamlined approach to expand mouse KSCs in low-calcium medium (<0.07 mM calcium), promoting proliferation while preserving stem cell properties and enabling controlled differentiation, all without the need for feeder cells. Conditioned medium derived from primary dermal fibroblasts (DFs), isolated from the same neonatal mice used for KSC isolation, was developed to enhance KSC proliferation and maintain stem cell characteristics. This fibroblast-conditioned medium significantly boosted KSC expansion and supported both proliferation and differentiation. A two-step purification process, based on rapid stem cell attachment to a composite matrix, ensured high cell purity and eliminated interference from other epidermal cell populations, making the approach reliable and effective. By eliminating feeder layers and employing fibroblast-conditioned medium, this optimized protocol facilitates the accessibility of primary KSCs for research, supporting investigations into skin disorders and signaling pathways, and advancing progress in skin biology.
Collapse
Affiliation(s)
- Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dhirendra Singh
- Animal Facility, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
25
|
Yoshikawa M, Nakayama T, Asaba K. Systematic proteome-wide Mendelian randomization to prioritize causal plasma proteins for skin cancers. Commun Biol 2024; 7:1681. [PMID: 39702585 DOI: 10.1038/s42003-024-07403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
Skin cancer is one of the most common cancers worldwide. Some risk factors including sun exposure and MC1R variants are recognized; however, the identification of additional genetic factors is essential for the development of novel therapeutic strategies. Here, we conducted a proteome-wide Mendelian randomization (MR) using plasma protein quantitative trait loci (pQTLs) from a published study and the UK Biobank genome-wide association study (GWAS) of skin cancers. We replicated the published result of ASIP, which was significantly associated with increased risks of basal cell carcinoma (BCC) and malignant melanoma. Moreover, we newly identified CTSS, which was significantly associated with a decreased risk of BCC. A series of replication analyses using the DeCODE pQTLs and the FinnGen GWAS, and sensitivity analyses including Steiger filtering, reverse MR, and Bayesian colocalization, supported our primary results. Our findings highlighted the possibility of prioritizing proteins for novel therapeutic or preventive targets and biomarkers for skin cancers.
Collapse
Affiliation(s)
- Masahiro Yoshikawa
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kensuke Asaba
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Imran M, Moyle PM, Kamato D, Mohammed Y. Advances in, and prospects of, 3D preclinical models for skin drug discovery. Drug Discov Today 2024; 29:104208. [PMID: 39396673 DOI: 10.1016/j.drudis.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The skin has an important role in regulating homeostasis and protecting the body from endogenous and exogenous microenvironments. Although 3D models for drug discovery have been extensively studied, there is a growing demand for more advanced 3D skin models to enhance skin research. The use of these advanced skin models holds promise across domains such as cosmetics, skin disease treatments, and toxicity testing of new therapeutics. Recent advances include the development of skin-on-a-chip, spheroids, reconstructed skin, organoids, and computational approaches, including quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research. These innovations are bridging the gap between traditional 2D and advanced 3D models, moving progress from research to clinical applications. In this review, we highlight in vitro and computational skin models with advanced drug discovery for skin-related applications.
Collapse
Affiliation(s)
- Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Environment and Science, Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
27
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Krisanti RIA, Wanandi SI, Wuyung PE, Hoemardani ASD. Effect of narrowband ultraviolet B (311 nm) exposure on skin carcinogenesis in Wistar rats. J Adv Vet Anim Res 2024; 11:1105-1113. [PMID: 40013270 PMCID: PMC11855443 DOI: 10.5455/javar.2024.k861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 02/28/2025] Open
Abstract
Objective The aim of this study is to determine narrowband UVB (NB-UVB) irradiation's effect on the promotion of skin cancer, particularly its effect on DNA damage, oxidative stress, inflammation, and histological changes in Wistar rat skin. Materials and Methods Wistar rats were selected for this study and randomly divided into control, dimethylbenzanthracene (DMBA), and DMBA+NB-UVB groups. The rats were given a single dose of DMBA and exposed to NB-UVB 3 times a week for 10 weeks. The radiation dose started with 1 minimal erythema dose, which is equivalent to 3.192 J/cm². In the 11th week, analysis on cyclobutene pyrimidine dimer (CPD), malondialdehyde (MDA), nuclear factor kappa-B (NFκB), inflammatory cytokines, and histopathology examination of the skin tissue was conducted. Results Higher CPD, MDA, NFκB, tumor necrosis factor a (TNF-a), interleukin (IL)-6, IL-11, IL-10, and IL-12 levels in rats exposed to DMBA+NB-UVB for 10 weeks compared to control and DMBA groups. Macroscopic examination presented erythema, skin thickening, desquamation, ulcer, and crust. Histopathology examination showed hyperkeratosis, acanthosis, atypical keratinocytes, irregular arrangement of the basement membrane, and inflammatory cell infiltration in the DMBA+NB-UVB group. Conclusion This research has shown that 10 weeks of a combination of DMBA and NB-UVB irradiation induced DNA damage, oxidative stress, inflammation, and histological changes in the Wistar rat skin.
Collapse
Affiliation(s)
- Roro Inge Ade Krisanti
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita Eka Wuyung
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Aida S. D. Hoemardani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
29
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
30
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
31
|
Erdoğan MM, Yerlikaya Kavak S. Role of spexin and DARS2 as potential biomarkers in basal cell carcinoma and cutaneous malignant melanoma diagnosis, and as therapeutic targets. Arch Dermatol Res 2024; 316:698. [PMID: 39417889 DOI: 10.1007/s00403-024-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Basal cell carcinoma (BCC) is a slowly progressive, locally aggressive and rarely metastasizing cancer, and although its mortality is low, its morbidity and cost of disease are high. While BCC is more common, cutaneous malignant melanoma (CMM) is significant due to its higher mortality rate. These patients can be treated, but recurrence, metastasis and mortality may occur in such patients. Various environmental, phenotypic and genotypic factors, especially ultraviolet (UV) radiations, play a role in the etiology of BCC and CMM. Histopathological examination continues to be the "gold standard" in their diagnosis. Spexin (SPX) and DARS2 are newly discovered proteins linked to many diseases, including cancer. These proteins may have an effect on the development and expression of skin cancers such as BCC and CMM. In this study, we evaluated the potential of SPX and DARS2 expressions as immunohistochemical biomarkers in the differential diagnosis of BCC and CMM. This study was conducted retrospectively using samples taken from the pathology laboratory. A total of 180 patient samples were used. The control group consisted of healthy skin tissues of the patients, and the other groups consisted of BCC and CMM tissues of the same patients. Tissue samples of all three groups were evaluated immunohistochemically with SPX and DARS2. The immunoreactivity of SPX was found to be higher in BCC and CMM tissue samples than in healthy skin tissues in the control group. DARS2 immunoreactivity was found to be higher in CMM tissues compared to the other two groups, and statistically significant in BCC tissues when compared with healthy control group tissues. SPX can be used as an immunohistochemical biomarker in the diagnosis of BCC and CMM. Since DARS2 expression is statistically more significant in CMM tissues than in BCC tissues, it can be used in differential diagnosis.
Collapse
|
32
|
Gąsiorowski K, Gontarz M, Bargiel J, Marecik T, Szczurowski P, Wyszyńska-Pawelec G. Reconstructive Techniques Following Malignant Eyelid Tumour Excision-Our Experience. J Clin Med 2024; 13:6120. [PMID: 39458069 PMCID: PMC11508535 DOI: 10.3390/jcm13206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Malignant eyelid tumours present a considerable challenge in the field of ophthalmic oncology, necessitating a combination of precision oncological care and meticulous reconstruction to ensure the preservation of eyelid functionality and the maintenance of facial aesthetics. Method: This study presents a review of the outcomes of 167 patients who underwent eyelid reconstruction following the excision of primary non-melanocytic malignant tumours. The choice of reconstruction technique was dependent on a number of factors, including the stage of the tumour, its location, and the characteristics of the patient. The most commonly used techniques included regional flaps, local flaps, and skin grafts. The most frequently employed reconstruction techniques were forehead flaps (59 cases), simple excisions (38 cases), and Mustarde cheek flaps (16 cases). Result: The postoperative complications, including ectropion, epiphora, and flap necrosis, were recorded. However, no significant correlation was found between the risk of complications and either the location of the tumour or the reconstruction method employed. Despite the complexity of medial canthal and lower eyelid reconstruction, satisfactory aesthetic and functional outcomes were generally achieved. Conclusions: This study emphasises the importance of individualised surgical planning, highlighting the advantages and limitations of various techniques to optimise both the functional and aesthetic results.
Collapse
Affiliation(s)
- Krzysztof Gąsiorowski
- Department of Cranio-Maxillofacial Surgery, Medical College, Jagiellonian University, 30-688 Cracow, Poland; (M.G.); (J.B.); (T.M.); (P.S.); (G.W.-P.)
| | | | | | | | | | | |
Collapse
|
33
|
Sun T, Liu C, Kong L, Zha J, Ni G. Cold plasma irradiation inhibits skin cancer via ferroptosis. Biomed Phys Eng Express 2024; 10:065036. [PMID: 39390682 DOI: 10.1088/2057-1976/ad8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cold atmospheric plasma (CAP) has been extensively utilized in medical treatment, particularly in cancer therapy. However, the underlying mechanism of CAP in skin cancer treatment remains elusive. In this study, we established a skin cancer model using CAP treatmentin vitro. Also, we established the Xenograft experiment modelin vivo. The results demonstrated that treatment with CAP induced ferroptosis, resulting in a significant reduction in the viability, migration, and invasive capacities of A431 squamous cell carcinoma, a type of skin cancer. Mechanistically, the significant production of reactive oxygen species (ROS) by CAP induces DNA damage, which then activates Ataxia-telangiectasia mutated (ATM) and p53 through acetylation, while simultaneously suppressing the expression of Solute Carrier Family 7 Member 11 (SLC7A11). Consequently, this cascade led to the down-regulation of intracellular Glutathione peroxidase 4 (GPX4), ultimately resulting in ferroptosis. CAP exhibits a favorable impact on skin cancer treatment, suggesting its potential medical application in skin cancer therapy.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingjing Zha
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| |
Collapse
|
34
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
35
|
Li R, Luo W, Chen X, Zeng Q, Yang S, Wang P, Hu J, Chen A. An observational and genetic investigation into the association between psoriasis and risk of malignancy. Nat Commun 2024; 15:7952. [PMID: 39261450 PMCID: PMC11391051 DOI: 10.1038/s41467-024-51824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
The relationship between psoriasis and site-specific cancers remains unclear. Here, we aim to investigate whether psoriasis is causally associated with site-specific cancers. We use observational and genetic data from the UK Biobank, obtaining GWAS summary data, eQTL analysis data, TCGA data, and GTEx data from public datasets. We perform PheWAS, polygenic risk score analysis, and one-sample and two-sample Mendelian randomization analyses to investigate the potential causal associations between psoriasis and cancers. In the unselected PheWAS analysis, psoriasis is associated with higher risks of 16 types of cancer. Using one-sample Mendelian randomization analyses, it is found that genetically predicted psoriasis is associated with higher risks of anal canal cancer, breast cancer, follicular non-Hodgkin's lymphoma and nonmelanoma skin cancer in women; and lung cancer and kidney cancer in men. Our two-sample Mendelian randomization analysis indicates that psoriasis is causally associated with breast cancer and lung cancer. Gene annotation shows that psoriasis-related genes, such as ERAP1, are significantly different in lung and breast cancer tissues. Taken together, clinical attention to lung cancer and breast cancer may be warranted among patients with psoriasis.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Kukula-Koch W, Dycha N, Lechwar P, Lasota M, Okoń E, Szczeblewski P, Wawruszak A, Tarabasz D, Hubert J, Wilkołek P, Halabalaki M, Gaweł-Bęben K. Vaccinium Species-Unexplored Sources of Active Constituents for Cosmeceuticals. Biomolecules 2024; 14:1110. [PMID: 39334876 PMCID: PMC11430151 DOI: 10.3390/biom14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Vaccinium is represented by shrubs growing in a temperate climate that have been used for ages as traditional remedies in the treatment of digestive problems, in diabetes, renal stones or as antiseptics due to the presence of polyphenols (anthocyanins, flavonoids and tannins) in their fruits and leaves. Recent studies confirm their marked potential in the treatment of skin disorders and as skin care cosmetics. The aim of this review is to present the role of Vaccinium spp. as cosmetic products, highlight their potential and prove the biological properties exerted by the extracts from different species that can be useful for the preparation of innovative cosmetics. In the manuscript both skin care and therapeutic applications of the representatives of this gender will be discussed that include the antioxidant, skin lightening, UV-protective, antimicrobial, anti-inflammatory, and chemopreventive properties to shed new light on these underestimated plants.
Collapse
Affiliation(s)
- Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Natalia Dycha
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | - Paulina Lechwar
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Magdalena Lasota
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| | - Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Dominik Tarabasz
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (W.K.-K.); (N.D.); (D.T.)
| | | | - Piotr Wilkołek
- Department of Clinical Diagnostics and Veterinary Dermatology, University of Life Sciences in Lublin, 32 Gleboka Str., 20-612 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (P.L.); (M.L.); (K.G.-B.)
| |
Collapse
|
37
|
Fu X, Zeng F, Li L, Liu G, Zhong Q, Chen S. The Causal Relationship Between Physical Activity and Skin Cancer Risk: An Univariable Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2024; 17:1963-1972. [PMID: 39220291 PMCID: PMC11366249 DOI: 10.2147/ccid.s472443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Background The existing observational research on the relationship between physical activity (PA) and skin cancer (SC) is contentious, which points to the intricate nature of their association and underscores the imperative for more nuanced research to untangle the causal dynamics at play. The aim of this article is to delve deeper into this complex relationship, seeking to clarify whether PA serves as a protective factor against SC, or contributes to its risk. Methods We utilized data from the genome-wide association study (GWAS) of PA from GWAS Catalog (include self-reported moderate to vigorous PA (MVPA), self-reported vigorous PA (VPA), and accelerometer-based average-accelerated PA). The data of SC is from FinnGen. All of the participants are of European ancestry. We used two-sample Mendelian Randomization (TSMR) to analyze the causal relationship between PA and SC.The research was conducted using inverse variance weighted (IVW) method as the primary approach, and MR Egger regression as supplementary analytical method. To ensure the robustness of the results, Cochran's Q-test and MR pleiotropy residual sum and outlier (MR-PRESSO) global tests were used to measure sensitivity. Results Our analysis indicated that average-accelerated PA was associated with an increased risk of SC (ORIVW = 0.94, 95% CI 0.93-0.96, P < 0.001). While neither MVPA (ORIVW = 0.99, 95% CI 0.67-1.47, P = 0.962) nor VPA (ORIVW = 0.80, 95% CI 0.29-2.18, P = 0.656) shows causal relationship on risk of SC. Conclusion Our research suggests that PA is associated with a decrease in SC, provides a new perspective for future SC prevention. Our research findings bolster the hypothesis that increased levels of PA, characterized by average acceleration, are associated with a reduced risk of developing skin cancer. This has filled the gap of research on the causal relationship between PA and SC, and could pave the way for novel preventive strategies against skin cancer.
Collapse
Affiliation(s)
- Xiaoming Fu
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Fuhai Zeng
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Linling Li
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Guoquan Liu
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Qing Zhong
- Department of Science and Technology, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| | - Shouwan Chen
- Department of Burn and Plastic Surgery, The People’s Hospital of Jianyang City, Jianyang, Sichuan, People’s Republic of China
| |
Collapse
|
38
|
Londhe S, Tripathy S, Saha S, Patel A, Chandra Y, Patra CR. Therapeutic Potential of Silver Nitroprusside Nanoparticles for Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:5057-5075. [PMID: 39115261 DOI: 10.1021/acsabm.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Melanoma has gained considerable attention due to its high mortality and morbidity rate worldwide. The currently available treatment options are associated with several limitations such as nonspecificity, drug resistance, easy clearance, low efficacy, toxicity-related issues, etc. To this end, nanotechnology has garnered significant attention for the treatment of melanoma. In the present manuscript, we have demonstrated the in vitro and in vivo anticancer activity of silver nitroprusside nanoparticles (abbreviated as AgNNPs) against melanoma. The AgNNPs exhibit cytotoxicity against B16F10 cells, which has been investigated by several in vitro experiments including [methyl 3H]-thymidine incorporation assay, cell cycle and apoptosis analysis by flow cytometry, and ROS generation through DCFDA, DHE, and DAF2A reagents. Further, the internalization of nanoparticles was determined by ICPOES analysis, while their colocalization was analyzed by confocal microscopy. Additionally, JC-1 staining is performed to examine mitochondrial membrane potential (MMP). Cytoskeleton integrity was observed by phalloidin staining. Expression of different markers (Ki-67, cytochrome c, and E-cadherin) was checked using an immunofluorescence assay. The in vivo therapeutic efficacy of AgNNPs has been validated in the melanoma model established by inoculating B16F10 cells into the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of AgNNPs reduced melanoma growth and increased the survivability of tumor-bearing mice. The in vivo immunofluorescence studies (Ki-67, CD31, and E-cadherin) and TUNEL assay support the inhibitory and apoptotic nature of AgNNPs toward melanoma, respectively. Furthermore, the various signaling pathways and molecular mechanisms involved in anticancer activity are evaluated by Western blot analysis. These findings altogether demonstrate the promising anticancer potential of AgNNPs toward melanoma.
Collapse
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
39
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
40
|
Chgari O, Wahnou H, Ndayambaje M, Moukhfi F, Benkhnigue O, Marnissi F, Limami Y, Oudghiri M. Orbea variegata (L.) Haw in skin carcinogenesis: insights from an in vivo male Swiss mouse model study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:630-645. [PMID: 38741420 DOI: 10.1080/15287394.2024.2354790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Skin cancer is the most widespread type of malignant tumor representing a major public health concern. Considering the numerous side effects associated with conventional treatments, phytotherapy may be regarded as a viable medicinal alternative. This study aimed to investigate the therapeutic potential of Orbea variegata (L.) Haw, an ornamental plant, in treating skin cancer using an animal model induced by a combination of ultraviolet (UV) irradiation and sulfuric acid treatment. The hydroethanolic extract of Orbea variegata underwent phytochemical characterization, identifying the presence of reducing sugars, coumarins, alkaloids, flavonoids, tannins, and saponins through qualitative screening. Quantitative analysis demonstrated significant amounts of phenolic compounds (29.435 ± 0.571 mg GAE/g of dry extract), flavonoids (6.711 ± 0.272 mg QE/g of dry extract), and tannins (274.037 ± 11.3 mg CE/g of dry extract). The administration the hydroethanolic extract in two concentrations (1 or 2 g/kg) to male Swiss mice exhibited no marked adverse effects, as evidenced by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activity levels. In addition, the extract significantly reduced skin hyperplasia and inflammation induced by UV/sulfuric acid treatment as noted in tissue analyses and decreased protein expression of nuclear proliferation marker (Ki-67). This improvement was associated with a marked decrease in oxidative stress, as indicated by diminished lipid peroxidation levels, and restoration of the activity of endogenous antioxidant enzyme catalase (CAT) to control levels. Our findings demonstrated the potential of Orbea variegata hydroethanolic extract to be considered as a treatment for skin cancer, exhibiting its apparent safety and efficacy in reducing inflammation and carcinogenesis in a UV/sulfuric acid-induced Swiss mouse model, attributed to its phytochemical content and associated antioxidant activities.
Collapse
Affiliation(s)
- Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatimazahra Moukhfi
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ouafae Benkhnigue
- Department of Botany and Plant Ecology, Scientific Institute, Mohammed V University in Rabat, Rabat, Morocco
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital-Casablanca, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
41
|
Desai VM, Kumbhar P, Kadam AY, Swarup J, Priya S, Jain A, Singhvi G. Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights. Expert Opin Drug Deliv 2024; 21:1213-1233. [PMID: 39136542 DOI: 10.1080/17425247.2024.2392799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Pragati Kumbhar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Akanksha Yogesh Kadam
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Ankit Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| |
Collapse
|
42
|
Sharma P, Kaul S, Jain N, Pandey M, Nagaich U. Enhanced Skin Penetration and Efficacy: First and Second Generation Lipoidal Nanocarriers in Skin Cancer Therapy. AAPS PharmSciTech 2024; 25:170. [PMID: 39044049 DOI: 10.1208/s12249-024-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Skin carcinoma remains one of the most widespread forms of cancer, and its global impact continues to increase. Basal cell carcinoma, melanoma, and squamous cell carcinoma are three kinds of cutaneous carcinomas depending upon occurrence and severity. The invasive nature of skin cancer, the limited effectiveness of current therapy techniques, and constraints to efficient systems for drug delivery are difficulties linked with the treatment of skin carcinoma. In the present era, the delivery of drugs has found a new and exciting horizon in the realm of nanotechnology, which presents inventive solutions to the problems posed by traditional therapeutic procedures for skin cancer management. Lipid-based nanocarriers like solid lipid nanoparticles and nanostructured lipid carriers have attracted a substantial focus in recent years owing to their capability to improve the drug's site-specific delivery, enhancing systemic availability, and thus its effectiveness. Due to their distinct structural and functional characteristics, these nanocarriers can deliver a range of medications, such as peptides, nucleic acids, and chemotherapeutics, via different biological barriers, such as the skin. In this review, an effort was made to present the mechanism of lipid nanocarrier permeation via cancerous skin. In addition, recent research advances in lipid nanocarriers have also been discussed with the help of in vitro cell lines and preclinical studies. Being a nano size, their limitations and toxicity aspects in living systems have also been elaborated.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201301, Noida, India.
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Upendra Nagaich
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| |
Collapse
|
43
|
Li Y, Li Q, Cao Z, Wu J. Multicenter proteome-wide Mendelian randomization study identifies causal plasma proteins in melanoma and non-melanoma skin cancers. Commun Biol 2024; 7:857. [PMID: 39003418 PMCID: PMC11246481 DOI: 10.1038/s42003-024-06538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
This study addresses the diagnostic and therapeutic challenges in malignant melanoma (MM) and non-melanoma skin cancers (NMSC). We aim to identify circulating proteins causally linked to MM and NMSC traits using a multicenter Mendelian randomization (MR) framework. We utilized large-scale cis-MR to estimate the impact of numerous plasma proteins on MM, NMSC, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC). To ensure robustness, additional analyses like MR Steiger and Bayesian colocalization are conducted, followed by replication through meta-analytical methods. The associations between identified proteins and outcomes are also validated at the tissue level using Transcriptome-Wide Association Study methods. Furthermore, a protein-protein interaction analysis is conducted to explore the relationship between identified proteins and existing cancer medication targets. The MR analysis has identified associations of 13 plasma proteins with BCC, 2 with SCC, and 1 with MM. Specifically, ASIP and KRT5 are associated with BCC, with ASIP also potentially targeting MM. CTSS and TNFSF8 are identified as promising druggability candidates for BCC. This multidimensional approach nominates ASIP, KRT5, CTSS, and TNFSF8 as potential diagnostic and therapeutic targets for skin cancers.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianhuang Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
44
|
Meng Y, Chen S, Li P, Wang C, Ni X. Tumor Cell Membrane-Encapsulated MLA Solid Lipid Nanoparticles for Targeted Diagnosis and Radiosensitization Therapy of Cutaneous Squamous Cell Carcinoma. Mol Pharm 2024; 21:3218-3232. [PMID: 38885477 DOI: 10.1021/acs.molpharmaceut.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Pengyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
45
|
Lei H, Chen X, Bai R, Wang Q, Xian N, Zhao X, Zhou X, Zheng Y, Wang G. Genetically predicted TWEAK mediates the association between lipidome and Keratinocyte Carcinomas. Skin Res Technol 2024; 30:e13781. [PMID: 38932454 PMCID: PMC11208293 DOI: 10.1111/srt.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown. OBJECTIVE This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators. METHODS A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates. RESULTS MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK. CONCLUSION This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.
Collapse
Affiliation(s)
- Hao Lei
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral DiseasesDepartment of OrthodonticsSchool of StomatologyThe Fourth Military Medical UniversityShaanxi ProvinceXi'anChina
| | - Ruimin Bai
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Qian Wang
- Department of DermatologyTangdu HospitalAir Force Military Medical UniversityXi'anShaanxi ProvinceChina
| | - Ningyi Xian
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xinrong Zhao
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xiaolin Zhou
- Department of Dermatologythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Guorong Wang
- The First Department of General Surgerythe Third Affiliated Hospital and Shaanxi Provincial People's HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
46
|
Qureshi SA, Rafiya K, Awasthi S, Jain A, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. Biomembrane camouflaged nanoparticles: A paradigm shifts in targeted drug delivery system. Colloids Surf B Biointerfaces 2024; 238:113893. [PMID: 38631282 DOI: 10.1016/j.colsurfb.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Advanced biomimetic membrane-coated formulations have garnered significant interest from researchers as a promising strategy for targeted drug delivery, site-specific accumulation and heightened therapeutic outcomes. Biomimetic nanotechnology is able to retain the biological properties of the parent cell thus are able to exhibit superior targeting compared to conventional formulations. In this review, we have described different types of cell membrane camouflaged NPs. Mechanism of isolation and coating of the membranes along with the applications of each type of membrane and their mechanism to reach the desired site. Furthermore, a fusion of different membranes in order to prepare hybrid membrane biomimetic NPs which could possess better efficacy is discussed in detail in the review. Later, applications of the hybrid membrane-cloaked NPs along with current development were discussed in detail along with the challenges associated with it. Although membrane-cloaked NPs are currently in the preliminary stage of development, there is a huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
Affiliation(s)
- Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sakshi Awasthi
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Abhishek Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
47
|
Hosseinzadeh M, Hussain D, Zeki Mahmood FM, A. Alenizi F, Varzeghani AN, Asghari P, Darwesh A, Malik MH, Lee SW. A model for skin cancer using combination of ensemble learning and deep learning. PLoS One 2024; 19:e0301275. [PMID: 38820401 PMCID: PMC11142560 DOI: 10.1371/journal.pone.0301275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 06/02/2024] Open
Abstract
Skin cancer has a significant impact on the lives of many individuals annually and is recognized as the most prevalent type of cancer. In the United States, an estimated annual incidence of approximately 3.5 million people receiving a diagnosis of skin cancer underscores its widespread prevalence. Furthermore, the prognosis for individuals afflicted with advancing stages of skin cancer experiences a substantial decline in survival rates. This paper is dedicated to aiding healthcare experts in distinguishing between benign and malignant skin cancer cases by employing a range of machine learning and deep learning techniques and different feature extractors and feature selectors to enhance the evaluation metrics. In this paper, different transfer learning models are employed as feature extractors, and to enhance the evaluation metrics, a feature selection layer is designed, which includes diverse techniques such as Univariate, Mutual Information, ANOVA, PCA, XGB, Lasso, Random Forest, and Variance. Among transfer models, DenseNet-201 was selected as the primary feature extractor to identify features from data. Subsequently, the Lasso method was applied for feature selection, utilizing diverse machine learning approaches such as MLP, XGB, RF, and NB. To optimize accuracy and precision, ensemble methods were employed to identify and enhance the best-performing models. The study provides accuracy and sensitivity rates of 87.72% and 92.15%, respectively.
Collapse
Affiliation(s)
- Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Dildar Hussain
- Department of AI and Data Science, Sejong University, Seoul, Republic of Korea
| | | | - Farhan A. Alenizi
- Electrical Engineering Department, College of engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Parvaneh Asghari
- Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aso Darwesh
- Department of Information Technology, University of Human Development, Sulaymaniyah, Kurdistan region of Iraq
| | - Mazhar Hussain Malik
- School of Computer Science and Creative Technologies College of Arts, Technology and Environment (CATE) University of the West of England Frenchay Campus, Coldharbour Lane Bristol, Bristol, United Kingdom
| | - Sang-Woong Lee
- Pattern Recognition and Machine Learning Lab, Gachon University, Seongnamdaero, Sujeonggu, Seongnam, Republic of Korea
| |
Collapse
|
48
|
Mo Z, Yuan J, Guan X, Peng J. Advancements in Dermatological Applications of Curcumin: Clinical Efficacy and Mechanistic Insights in the Management of Skin Disorders. Clin Cosmet Investig Dermatol 2024; 17:1083-1092. [PMID: 38765192 PMCID: PMC11100965 DOI: 10.2147/ccid.s467442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin, derived from Curcuma longa (turmeric), exhibits significant potential in dermatology, addressing conditions like atopic dermatitis, psoriasis, chronic wounds, skin cancer, and infections through its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. This review synthesizes evidence on curcumin's mechanisms, including modulation of immune responses and promotion of wound healing, showcasing its efficacy in reducing inflammation, cytokine levels, and enhancing skin barrier functions. Studies highlight curcumin's ability to selectively target tumor cells, suggesting a multifaceted approach to cancer therapy with minimal side effects. Despite promising therapeutic benefits, challenges remain in bioavailability, potency, and targeted delivery, underscoring the need for further research to optimize dosages, delivery methods, and assess long-term safety. The integration of curcumin into dermatological practice requires a balanced consideration of evidence-based efficacy and safety. Curcumin's comprehensive utility in dermatology, coupled with the necessity for advanced scientific exploration, emphasizes the importance of combining traditional knowledge with contemporary research to improve patient care in dermatology. This approach could significantly enhance outcomes for individuals with skin-related conditions, marking curcumin as a versatile and promising agent in the field.
Collapse
Affiliation(s)
- Zhiming Mo
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jiayi Yuan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Xuelian Guan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jianhong Peng
- Department of Internal Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| |
Collapse
|
49
|
Muraro E, Montico B, Lum B, Colizzi F, Giurato G, Salvati A, Guerrieri R, Rizzo A, Comaro E, Canzonieri V, Anichini A, Del Vecchio M, Mortarini R, Milione M, Weisz A, Pizzichetta MA, Simpson F, Dolcetti R, Fratta E, Sigalotti L. Antibody dependent cellular cytotoxicity-inducing anti-EGFR antibodies as effective therapeutic option for cutaneous melanoma resistant to BRAF inhibitors. Front Immunol 2024; 15:1336566. [PMID: 38510242 PMCID: PMC10950948 DOI: 10.3389/fimmu.2024.1336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Benedict Lum
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Aurora Rizzo
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Comaro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Pathology Unit 1, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Maria Antonietta Pizzichetta
- Division of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Dermatology, University of Trieste, Trieste, Italy
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
50
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|