1
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Tang J, Liu Z, Xie G, Wang C, Jiang Y. POU4F1 enhances lung cancer gemcitabine resistance by regulating METTL3-dependent TWF1 mRNA N6 adenosine methylation. 3 Biotech 2025; 15:7. [PMID: 39676891 PMCID: PMC11638459 DOI: 10.1007/s13205-024-04161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
This study aimed to investigate the role of POU Class 4 Homeobox 1 (POU4F1) in regulating gemcitabine (GEM) resistance in lung cancer cells. The mRNA and protein expressions were assessed using RT-qPCR, western blot, immunofluorescence, and immunohistochemistry. Cell viability and proliferation were assessed by CCK-8 assay and EdU assay. TUNEL staining and flow cytometry were employed to detect cell apoptosis. The m6A modification of TWF1 was detected using MeRIP assay. The interactions between molecules were validated using dual luciferase reporter gene, ChIP, and RIP assays. POU4F1 knockdown inhibited GEM resistance and autophagy in lung cancer cells. Mechanistically, POU4F1 transcriptionally activated methyltransferase-like protein 3 (METTL3) in GEM-resistant cells by binding to the METTL3 promoter. METTL3 promoted the N6-methyladenosine (m6A) modification and expression level of twinfilin-1 (TWF1). Overexpression of METTL3 and TWF1 weakened the effects of POU4F1 knockdown on GEM resistance and autophagy. Moreover, knockdown POU4F1 also enhanced GEM anti-tumor sensitivity in vivo. In conclusion, POU4F1 upregulation promoted GEM resistance in lung cancer cells by promoting autophagy through increasing METTL3-mediated TWF1 m6A modification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04161-w.
Collapse
Affiliation(s)
- Jianfeng Tang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Zhijian Liu
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Guanghui Xie
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Chenbin Wang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Yongjun Jiang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| |
Collapse
|
4
|
Yao Z, Zhang H, Huang K, Huang G, Xi P, Jiang L, Qin D, Chen F, Li S, Wei R. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC. Transl Oncol 2025; 51:102206. [PMID: 39603206 PMCID: PMC11635771 DOI: 10.1016/j.tranon.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
While poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) have achieved specific clinical benefits in a subset of pancreatic ductal adenocarcinoma (PDAC) patients, the potential role of the PARPi niraparib in PDAC necessitates further exploration. In this study, we demonstrated that Niraparib exhibited a pronounced inhibitory effect on autophagy in PDAC both in vitro and in vivo. Mechanistically, this inhibition was primarily attributed to niraparib's ability to disrupt the fusion process between autophagosomes and lysosomes, while potentially exerting a relatively minor impact on the initial stage of autophagy. The blockade effect observed may be mediated via modulation of the ERK signaling pathway, and this effect can be mitigated by the application of an ERK inhibitor (FR180204). Notably, the combined treatment regimen of niraparib and gemcitabine failed to elicit the anticipated synergistic effects in wild-type PANC-1 cells, instead exhibiting pronounced antagonistic interactions. However, in gemcitabine-resistant PANC-1 cells, the combination of niraparib and gemcitabine exhibited modest additive effects. Furthermore, niraparib demonstrated a heightened cytotoxic potency against gemcitabine-resistant PANC-1 cells compared to wild-type PANC-1 cells, both in vitro and in vivo. Our research established that niraparib inhibits late-stage autophagy in PDAC, potentially representing a valuable salvage therapy for gemcitabine-resistant PDAC. Further clinical studies are justified.
Collapse
Affiliation(s)
- Zehui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huihui Zhang
- Center for Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510060, China
| | - Kewei Huang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guizhong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dailei Qin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Xiang Y, Zhou R, Yang Y, Bai H, Liang F, Wang H, Wang X. A Novel circ_0075829/miR-326/GOT1 ceRNA Crosstalk Regulates the Malignant Phenotypes and Drug Sensitivity of Gemcitabine-Resistant Pancreatic Cancer Cells. J Biochem Mol Toxicol 2025; 39:e70089. [PMID: 39692397 DOI: 10.1002/jbt.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown. To generate GEM-resistant PC cells (BxPC-3/GR and SW1990/GR), we exposed GEM-sensitive PC cells to GEM. Circ_0075829, microRNA (miR)-326, and glutamic-oxaloacetic transaminase 1 (GOT1) were quantified by a qRT-PCR or western blot method. Cell survival and viability were gauged by MTS assay. Cell proliferation, apoptosis, invasion, and migration were assessed by EdU, flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter assays were used to verify the relationship between miR-326 and circ_0075829 or GOT1. Mouse xenografts were performed to evaluate the role of circ_0075829 in vivo. Our data showed that circ_0075829 was upregulated in GEM-resistant PC tissues and cells. Knockdown of circ_0075829 impeded the proliferation, invasion, migration, and glutamine metabolism, and promoted cell apoptosis and GEM sensitivity of GEM-resistant PC cells. Moreover, circ_0075829 silencing suppressed the tumorigenicity of SW1990/GR cells and sensitized them to the cytotoxic effect of GME in vivo. Mechanistically, circ_0075829 bound miR-326 and exerted regulatory effects by affecting miR-326 expression. GOT1 was a direct miR-326 target and a key downstream effector of miR-326. Furthermore, circ_0075829 modulated GOT1 expression via miR-326. Our findings establish a novel regulatory network, the circ_0075829/miR-326/GOT1 competing endogenous RNA (ceRNA) crosstalk, in the regulation of GEM resistance in PC.
Collapse
MESH Headings
- Gemcitabine
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cell Line, Tumor
- Animals
- Mice
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/biosynthesis
- Female
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Yongjia Xiang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Rubing Zhou
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Yang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Fan Liang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongmei Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Xia Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
6
|
Zhou CH, Zhang T, Yu J, Yu G, Cheng S, Wu H, Xu BX, Luo H, Tian XB. MMP13 as an effective target of an active trifluoromethyl quinazoline compound against osteosarcoma. Toxicol Appl Pharmacol 2024; 495:117204. [PMID: 39674349 DOI: 10.1016/j.taap.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Osteosarcoma (OS) is a highly fatal malignant tumor with a high metastatic rate and poor prognosis. Matrix metalloproteinase-13 (MMP13) is involved in OS metastasis. Its increased expression is closely related to distant metastasis and poor prognosis. The trifluoromethyl quinazoline compound KZL-201 was designed and synthesized, and its inhibitory effect on the progression of OS cells was investigated. The aim of this study was to investigate the underlying mechanism of action of KZL-201 in OS using a combination of bioinformatics analysis, molecular biology, cytology, and zoology. The in vitro experiments showed that KZL-201 inhibited OS cell proliferation, invasion, and migration; KZL-201 induced apoptosis and arrested the cell cycle at the G2/M phase. The results of molecular docking, the cellular thermal shift assay, and gene silencing experiments showed that KZL-201 had a strong affinity for MMP13. KZL-201 inhibited the progression of 143B cells by regulating the TGF-β1/Smad2/3 pathway. Thus, MMP13 is an important target gene of KZL-201 in inhibiting 143B cell progression. The in vivo experiments showed that KZL-201 inhibited the growth of OS tissues and the expression of MMP13 in OS tissues. In summary, KZL-201 targeted MMP13 and inhibited its expression, consequently suppressing the progression of OS by regulating the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chang-Hua Zhou
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Clinical College of Guizhou Medical University, Guiyang 550004, China
| | - Ting Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Clinical College of Guizhou Medical University, Guiyang 550004, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Guizhou Natural Products Research Center, Guiyang 550014, China.
| | - Xiao-Bin Tian
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Clinical College of Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
7
|
Naro C, Ruta V, Sette C. Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer. Trends Mol Med 2024:S1471-4914(24)00308-3. [PMID: 39648052 DOI: 10.1016/j.molmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by dismal prognosis. Late diagnosis, resistance to chemotherapy, and lack of efficacious targeted therapies render PDAC almost untreatable. Dysregulation of splicing, the process that excises the introns from nascent transcripts, is emerging as a hallmark of PDAC and a possible vulnerability of this devastating cancer. Splicing factors are deregulated in PDAC and contribute to all steps of tumorigenesis, from inflammation-related early events to metastasis and acquisition of chemoresistance. At the same time, splicing dysregulation offers a therapeutic opportunity to target cancer-specific vulnerabilities. We discuss mounting evidence that splicing plays a key role in PDAC and the opportunities that this essential process offers for developing new targeted therapies.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy.
| |
Collapse
|
8
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
10
|
Lin J, Lyu Z, Feng H, Xie H, Peng J, Zhang W, Zheng J, Zheng J, Pan Z, Li Y. CircPDIA3/miR-449a/XBP1 feedback loop curbs pyroptosis by inhibiting palmitoylation of the GSDME-C domain to induce chemoresistance of colorectal cancer. Drug Resist Updat 2024; 76:101097. [PMID: 38861804 DOI: 10.1016/j.drup.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Although oxaliplatin (OXA) is widely used in the frontline treatment of colorectal cancer (CRC), CRC recurrence is commonly observed due to OXA resistance. OXA resistance is associated with a number of factors, including abnormal regulation of pyroptosis. It is therefore important to elucidate the abnormal regulatory mechanism underlying pyroptosis. Here, we identified that the circular RNA circPDIA3 played an important role in chemoresistance in CRC. CircPDIA3 could induce chemoresistance in CRC by inhibiting pyroptosis both in vitro and in vivo. Mechanistically, RIP, RNA pull-down and co-IP assays revealed that circPDIA3 directly bonded to the GSDME-C domain, subsequently enhanced the autoinhibitory effect of the GSDME-C domain through blocking the GSDME-C domain palmitoylation by ZDHHC3 and ZDHHC17, thereby restraining pyroptosis. Additionally, it was found that the circPDIA3/miR-449a/XBP1 positive feedback loop increased the expression of circPDIA3 to induce chemoresistance. Furthermore, our clinical data and patient-derived tumor xenograft (PDX) models supported the positive association of circPDIA3 with development of chemoresistance in CRC patients. Taken together, our findings demonstrated that circPDIA3 could promote chemoresistance by amplifying the autoinhibitory effect of the GSDME-C domain through inhibition of the GSDME-C domain palmitoylation in CRC. This study provides novel insights into the mechanism of circRNA in regulating pyroptosis and providing a potential therapeutic target for reversing chemoresistance of CRC.
Collapse
Affiliation(s)
- Jiatong Lin
- School of Medicine South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huolun Feng
- School of Medicine South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huajie Xie
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jingwen Peng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, SunYat-sen University, Guangzhou 510120, China
| | - Weifu Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Medical University, Dongguan 523808, China
| | - Jun Zheng
- Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China; Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China.
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Zihao Pan
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Yong Li
- School of Medicine South China University of Technology, Guangzhou 510006, China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Li Q, Zhang Y, Jin P, Chen Y, Zhang C, Geng X, Mun KS, Phang KC. New insights into the potential of exosomal circular RNAs in mediating cancer chemotherapy resistance and their clinical applications. Biomed Pharmacother 2024; 177:117027. [PMID: 38925018 DOI: 10.1016/j.biopha.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy resistance typically leads to tumour recurrence and is a major obstacle to cancer treatment. Increasing numbers of circular RNAs (circRNAs) have been confirmed to be abnormally expressed in various tumours, where they participate in the malignant progression of tumours, and play important roles in regulating the sensitivity of tumours to chemotherapy drugs. As exosomes mediate intercellular communication, they are rich in circRNAs and exhibit a specific RNA cargo sorting mechanism. By carrying and delivering circRNAs, exosomes can promote the efflux of chemotherapeutic drugs and reduce intracellular drug concentrations in recipient cells, thus affecting the cell cycle, apoptosis, autophagy, angiogenesis, invasion and migration. The mechanisms that affect the phenotype of tumour stem cells, epithelial-mesenchymal transformation and DNA damage repair also mediate chemotherapy resistance in many tumours. Exosomal circRNAs are diagnostic biomarkers and potential therapeutic targets for reversing chemotherapy resistance in tumours. Currently, the rise of new fields, such as machine learning and artificial intelligence, and new technologies such as biosensors, multimolecular diagnostic systems and platforms based on circRNAs, as well as the application of exosome-based vaccines, has provided novel ideas for precision cancer treatment. In this review, the recent progress in understanding how exosomal circRNAs mediate tumour chemotherapy resistance is reviewed, and the potential of exosomal circRNAs in tumour diagnosis, treatment and immune regulation is discussed, providing new ideas for inhibiting tumour chemotherapy resistance.
Collapse
Affiliation(s)
- Qiang Li
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Peikan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yepeng Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chuchu Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiuchao Geng
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kein Seong Mun
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kean Chang Phang
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
12
|
Mo C, You W, Rao Y, Lin Z, Wang S, He T, Shen H, Li X, Zhang R, Li B. Epigenetic regulation of DNA repair gene program by Hippo/YAP1-TET1 axis mediates sorafenib resistance in HCC. Cell Mol Life Sci 2024; 81:284. [PMID: 38967794 PMCID: PMC11335208 DOI: 10.1007/s00018-024-05296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Repair/drug effects
- DNA Repair/genetics
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Weixin You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Yipeng Rao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Zhenping Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China.
| |
Collapse
|
13
|
He M, Pan Y, You C, Gao H. CircRNAs in cancer therapy tolerance. Clin Chim Acta 2024; 558:119684. [PMID: 38649011 DOI: 10.1016/j.cca.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The rapidly expanding field of circular RNA (circ-RNA) research has opened new avenues in cancer diagnostics and treatment, highlighting the role of serum circRNAs as potential biomarkers for assessing tumor therapy resistance. This review comprehensively compiles existing knowledge regarding the biogenesis, function, and clinical relevance of circRNAs, emphasizing their stability, abundance, and cell type-specific expression profiles, which make them ideal candidates for noninvasive early biomarkers in cancer treatment. We explored the roles of circRNAs in oncogenesis and tumor progression and their complex interactions with patient responses to various cancer treatments, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Through the analysis of data from recent studies and clinical trials, we underscore the prognostic significance of serum circRNAs in predicting therapeutic outcomes, their involvement in resistance mechanisms, and their capacity to inform personalized treatment approaches. Additionally, this review addresses the obstacles inherent in circRNA research, including the need for standardized protocols for circRNA extraction and quantification and the elucidation of the clinical significance of circRNAs. Furthermore, our investigation extends to future prospects, including embedding circRNA profiling into regular clinical workflows and pioneering circRNA-based therapeutic approaches. We underscore the transformative potential of serum circRNAs in enhancing cancer diagnosis, improving the accuracy of therapy tolerance predictions, and ultimately fostering the advent of precision oncology.
Collapse
Affiliation(s)
- Miao He
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Yunyan Pan
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China
| | - Chongge You
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| | - Hongwei Gao
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| |
Collapse
|
14
|
Xu L, Ma X, Zhang X, Zhang C, Zhang Y, Gong S, Wu N, Zhang P, Feng X, Guo J, Zhao M, Ren Z, Zhang P. Correction: hsa_circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to enhance the DNA damage response and promote gemcitabine resistance in pancreatic ductal adenocarcinoma. Mol Cancer 2024; 23:16. [PMID: 38229124 PMCID: PMC10790419 DOI: 10.1186/s12943-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Affiliation(s)
- Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Shangqiu Municipal Hospital, Shangqiu, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
15
|
Lagunas-Rangel FA. Role of circular RNAs in DNA repair. RNA Biol 2024; 21:149-161. [PMID: 39550713 PMCID: PMC11572198 DOI: 10.1080/15476286.2024.2429945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Circular RNAs (circRNAs) exhibit a wide range of activities that allow them to participate in numerous cellular processes and make them relevant in a variety of diseases. In this regard, a key process in which circRNAs are involved, and which is the focus of this article, is DNA damage repair (DDR). This study aims to illustrate how circRNAs influence different DNA repair pathways, with particular emphasis on the underlying mechanisms. In addition, the potential medical applications of this knowledge are discussed, particularly in the diagnosis, prognosis and treatment of diseases. In this sense, circRNAs were found to play a crucial role in DNA repair processes by regulating the expression and activity of proteins involved in various DNA repair pathways. They influence the expression of DNA repair proteins by interacting with their mRNAs, sponging miRNAs that target these mRNAs, regulating transcription factors that bind to their promoters, modulating upstream signalling pathways, and affecting mRNA translation. Furthermore, circRNAs regulate the activity of DNA repair proteins by interacting directly with them, sequestering them in specific cellular compartments and controlling activation signalling or upstream DDR signalling.
Collapse
|