1
|
Li H, Wu F, Han Y, Guo Z, Chen T, Ma Z. CircRNA regulates lung cancer metastasis. Gene 2025; 935:149060. [PMID: 39481770 DOI: 10.1016/j.gene.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Lung cancer stands prominently among the foremost contributors to human mortality, distinguished by its elevated fatality rate and the second-highest incidence rate among malignancies. The metastatic dissemination of lung cancer stands as a primary determinant of its elevated mortality and recurrence rates, underscoring the imperative for comprehensive investigation into its metastatic pathways. Circular RNAs (circRNAs), a subclass of non-coding RNA (ncRNA) molecules, have garnered attention for their pivotal involvement in the genesis and advancement of lung cancer. Emerging evidence highlights the indispensable functions of circRNAs in orchestrating the metastatic cascade of lung cancer. This review primarily discusses the mechanisms by which circRNAs act as competitive endogenous RNAs (ceRNAs) and modulate various signaling pathways to regulate lung cancer metastasis. CircRNAs influence critical cellular processes including angiogenesis, autophagy, and glycolysis, thereby exerting influence over the metastatic cascade in lung cancer. These discoveries offer innovative perspectives and therapeutic avenues for the diagnosis and management of lung cancer.
Collapse
Affiliation(s)
- Han Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Yaqi Han
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Tangbing Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Liu D, Zhao X, Wang Z, Wang G, Chen Z, Ning S, Feng D, Sun X, Sun R, Yao J, Tian X. A novel protein encoded by circARHGAP12 attenuates DNA damage and apoptosis by regulating MDC1 in intestinal ischemia/reperfusion injury. Int J Biol Macromol 2024; 286:138374. [PMID: 39643171 DOI: 10.1016/j.ijbiomac.2024.138374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Excessive intestinal ischemia/reperfusion (I/R)-induced epithelial cell apoptosis results in damage to the intestinal defense barrier. Circular RNAs (circRNAs) are functional RNA transcripts, and their functions as microRNA (miRNA) sponges and binding proteins have been well characterized. Recent evidence has indicated that some circRNAs encode functional proteins. However, whether protein-encoding circRNAs contribute to intestinal I/R remains undiscovered. Here, we identified a protein-encoding circRNA, circARHGAP12, that can significantly attenuate intestinal I/R-induced cell apoptosis. Moreover, circARHGAP12 can encode a 229-amino-acid (aa) protein, ARHGAP12-229aa. The expression of both circARHGAP12 and ARHGAP12-229aa was downregulated in intestinal I/R injury. Additionally, circARHGAP12 protected against intestinal I/R injury mainly by encoding ARHGAP12-229aa. We performed RNA sequencing (RNA-seq) analyses to identify downstream targets of ARHGAP12-229aa. The results revealed that overexpression of ARHGAP12-229aa led to increased expression of MDC1, a DNA damage-related protein, and that this increase was accompanied by a decrease in intestinal epithelial cell DNA damage and apoptosis. Furthermore, MDC1 silencing weakened the protective effect of ARHGAP12-229aa against intestinal I/R injury. Our findings suggest a novel perspective on circRNA function, providing an innovative therapeutic strategy for intestinal I/R.
Collapse
Affiliation(s)
- Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116600, China
| | - Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Shili Ning
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Dongcheng Feng
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116600, China
| | - Xin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China..
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China..
| |
Collapse
|
3
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Li Y, Qiu G, Zhou M, Chen Q, Liao X. USP5 Stabilizes IKBKG Through Deubiquitination to Suppress Ferroptosis and Promote Growth in Non-small Cell Lung Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01574-5. [PMID: 39397222 DOI: 10.1007/s12013-024-01574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Ferroptosis, a distinctive modality of cell mortality, has emerged as a critical regulator in non-small cell lung cancer (NSCLC). The deubiquitinating enzyme USP5 has established an oncogenic role in NSCLC. However, its biological relevance in NSCLC cell ferroptosis is currently unexplored. Expression analysis was performed by quantitative PCR (qPCR), immunohistochemistry (IHC) and immunoblotting. Animal xenograft studies were used to detect USP5's role in tumor growth. Cell proliferation, colony formation and apoptotic ratio were assessed by CCK-8, colony formation and flow cytometry assays, respectively. Cell ferroptosis was evaluated by gauging ROS, MDA, GSH, SOD, and Fe2+ contents. The USP5/IKBKG relationship and the ubiquitinated IKBKG were evaluated by Co-IP experiments. USP5 expression was elevated in human NSCLC. USP5 depletion suppressed NSCLC cell in vitro and in vivo growth and enhanced cell apoptosis. Moreover, USP5 depletion induced ferroptosis in NSCLC cell lines. Mechanistically, USP5 could enhance the stability of IKBKG protein through deubiquitination. Re-expression of IKBKG partially but significantly abolished USP5 depletion-mediated anti-growth and pro-ferroptosis effects in NSCLC cells. Our study demonstrates that USP5 suppresses ferroptosis and enhances growth in NSCLC cells by stabilizing IKBKG protein through deubiquitination. Targeting USP5 expression is an encouraging strategy to block NSCLC progression.
Collapse
Affiliation(s)
- Yufu Li
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Gan Qiu
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Min Zhou
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Qianzhi Chen
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Xiaoyong Liao
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China.
| |
Collapse
|
5
|
Wei C, Peng D, Jing B, Wang B, Li Z, Yu R, Zhang S, Cai J, Zhang Z, Zhang J, Han L. A novel protein SPECC1-415aa encoded by N6-methyladenosine modified circSPECC1 regulates the sensitivity of glioblastoma to TMZ. Cell Mol Biol Lett 2024; 29:127. [PMID: 39333871 PMCID: PMC11429730 DOI: 10.1186/s11658-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can influence a variety of biological functions and act as a significant role in the progression and recurrence of glioblastoma (GBM). However, few coding circRNAs have been discovered in cancer, and their role in GBM is still unknown. The aim of this study was to identify coding circRNAs and explore their potential roles in the progression and recurrence of GBM. METHODS CircSPECC1 was screened via circRNAs microarray of primary and recurrent GBM samples. To ascertain the characteristics and coding ability of circSPECC1, we conducted a number of experiments. Afterward, through in vivo and in vitro experiments, we investigated the biological functions of circSPECC1 and its encoded novel protein (SPECC1-415aa) in GBM, as well as their effects on TMZ sensitivity. RESULTS By analyzing primary and recurrent GBM samples via circRNAs microarray, circSPECC1 was found to be a downregulated circRNA with coding potential in recurrent GBM compared with primary GBM. CircSPECC1 suppressed the proliferation, migration, invasion, and colony formation abilities of GBM cells by encoding a new protein known as SPECC1-415aa. CircSPECC1 restored TMZ sensitivity in TMZ-resistant GBM cells by encoding the new protein SPECC1-415aa. The m6A reader protein IGF2BP1 can bind to circSPECC1 to promote its expression and stability. Mechanistically, SPECC1-415aa can bind to ANXA2 and competitively inhibit the binding of ANXA2 to EGFR, thus resulting in the inhibition of the phosphorylation of EGFR (Tyr845) and its downstream pathway protein AKT (Ser473). In vivo experiments showed that the overexpression of circSPECC1 could combine with TMZ to treat TMZ-resistant GBM, thereby restoring the sensitivity of TMZ-resistant GBM to TMZ. CONCLUSIONS CircSPECC1 was downregulated in recurrent GBM compared with primary GBM. The m6A reader protein IGF2BP1 could promote the expression and stability of circSPECC1. The sequence of SPECC1-415aa, which is encoded by circSPECC1, can inhibit the binding of ANXA2 to EGFR by competitively binding to ANXA2 and inhibiting the phosphorylation of EGFR and AKT, thereby restoring the sensitivity of TMZ-resistant GBM cells to TMZ.
Collapse
Affiliation(s)
- Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Boyuan Jing
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 480082, Henan Province, China.
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
6
|
Liu R, Zhang H, Xin J, Xie S, Jiao F, Li Y, Chu M, Qiu J, Yan Y. Novel circular RNA hsa_circ_0036683 suppresses proliferation and migration by mediating the miR-4664-3p/CDK2AP2 axis in non-small cell lung cancer. Thorac Cancer 2024; 15:1929-1945. [PMID: 39113208 PMCID: PMC11462936 DOI: 10.1111/1759-7714.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The aim of the present study was to investigate the function of novel circular RNA hsa_circ_0036683 (circ-36683) in non-small cell lung cancer (NSCLC). METHODS RNA sequencing was used to screen out differentially expressed miRNAs. Expression levels of miR-4664-3p and circ-36683 were evaluated in lung carcinoma cells and tissues by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-4664-3p and circ-36683 on proliferation and migration were assessed using cell counting kit-8 (CCK-8), wound healing and transwell migration assays and xenograft experiments. The targeting relationship of circ-36683/miR-4664-3p/CDK2AP2 was assessed by luciferase reporter assays, western blot, qRT-PCR and argonaute2-RNA immunoprecipitation (AGO2 RIP). Co-immunoprecipitation (Co-IP), 5-ethynyl-2'-deoxyuridine (EdU) staining and CCK-8 were used to validate the indispensable role of CDK2AP2 in suppressing cell proliferation as a result of CDK2AP1 overexpression. RESULTS By RNA sequencing, miR-4664-3p was screened out as an abnormally elevated miRNA in NSCLC tissues. Transfection of miR-4664-3p could promote cell proliferation, migration and xenograft tumor growth. As a target of miR-4664-3p, CDK2AP2 expression was downregulated by miR-4664-3p transfection and CDK2AP2 overexpression could abolish the proliferation promotion resulting from miR-4664-3p elevation. Circ-36683, derived from back splicing of ABHD2 pre-mRNA, was attenuated in NSCLC tissue and identified as a sponge of miR-4664-3p. The functional study revealed that circ-36683 overexpression suppressed cell proliferation, migration and resulted in G0/G1 phase arrest. More importantly, the antioncogenic function of circ-36683 was largely dependent on the miR-4664-3p/CDK2AP2 axis, through which circ-36683 could upregulate the expression of p53/p21/p27 and downregulate the expression of CDK2/cyclin E1. CONCLUSION The present study revealed the antioncogenic role of circ-36683 in suppressing cell proliferation and migration and highlighted that targeting the circ-36683/miR-4664-3p/CDK2AP2 axis is a promising strategy for the intervention of NSCLC.
Collapse
Affiliation(s)
- Rui Liu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Han Zhang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Jiaxuan Xin
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Shu‐yang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - You‐Jie Li
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Meng‐yuan Chu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Junming Qiu
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Yun‐fei Yan
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
7
|
Zhang K, Qu J, Deng S, Yuan E. Serum IL-24 combined with CA125 as screening and prognostic biomarkers for NSCLC. Cell Biol Int 2024; 48:1160-1168. [PMID: 38751041 DOI: 10.1002/cbin.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 07/16/2024]
Abstract
Noninvasive and effective methods for early screening of non-small cell lung cancer (NSCLC) still need to be developed. At present, a reasonable conclusion is that a combination of tumor markers is a superior predictor of screening. Cytokines, as important regulators of cancer development, have great potential for the screening and prognosis of NSCLC. This study screened novel biomarkers related to the early screening and prognosis of NSCLC. In the present study, the biological significance and immunoregulation of interleukin-24 (IL-24) were analyzed based on The Cancer Genome Atlas data. Next, 150 serum samples from initially treated patients with NSCLC and 70 controls were collected, and we obtained pathological sections from 60 patients with NSCLC. The ELISA and immunohistochemistry results showed the differential expression of IL-24 and carbohydrate antigen 125 (CA125). The results show that IL-24 is an important tumor suppressor in NSCLC that helps to improve the poor prognosis of these patients. A significantly negative correlation between IL-24 and CA125 levels was also found. Notably, serum IL-24 levels were significantly negatively correlated with the TNM stage of patients with NSCLC, consistent with an important role for tumor suppressors in NSCLC. The receiver operating characteristic curve analysis showed that a combination of IL-24 and CA125 was an effective panel for discriminating patients with NSCLC from HD, and individuals with other lung diseases. Serum IL-24 and CA125 levels were identified as independent prognostic markers for NSCLC. The IL-24 and CA125 panel exhibited good performance in the screening of NSCLC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Jiao Qu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Deng
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Jiang Z, Person R, Lundh T, Pineda D, Engfeldt M, Krais AM, Hagberg J, Ricklund N, Vogel U, Saber AT, Tondel M, Albin M, Broberg K. Circulating lung-cancer-related non-coding RNAs are associated with occupational exposure to hexavalent chromium - A cross-sectional study within the SafeChrom project. ENVIRONMENT INTERNATIONAL 2024; 190:108874. [PMID: 38972113 DOI: 10.1016/j.envint.2024.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Hexavalent chromium (Cr(Ⅵ)) is classified as a group 1 human carcinogen and increases the risk of lung cancer. Non-coding RNAs (ncRNAs) have key regulatory roles in lung cancer, but less is known about their relation to Cr(Ⅵ) exposure. OBJECTIVES We aimed to 1) measure the expression of lung cancer-related circulating ncRNAs in exposed workers and controls; 2) assess associations between ncRNAs expression and Cr concentrations in red blood cells (RBC) and urine; and 3) evaluate correlations between the ncRNAs. METHODS The study included 111 Cr(VI) exposed workers and 72 controls recruited from the SafeChrom project. Cr concentrations were measured in RBC (biomarker of long-term exposure) and urine (biomarker of short-term exposure) samples. Long ncRNA (lncRNA) and microRNA (miRNA) were extracted from plasma followed by deoxyribonuclease treatment, complementary DNA synthesis, and quantitative real-time polymerase chain reaction using target-specific assays for three lncRNAs (H19, MALAT1, NORAD), and four miRNAs (miR-142-3p, miR-15b-5p, miR-3940-5p, miR-451a). RESULTS Expression levels of lncRNAs MALAT1 and NORAD, and all four miRNAs, were significantly lower in Cr(VI) exposed workers compared with controls, and correlated significantly with RBC-Cr concentrations (rS = -0.16 to -0.38). H19 was non-significantly increased in exposed workers but significantly correlated with miR-142-3p (rS = -0.33) and miR-15b-5p (rS = -0.30), and NORAD was significantly positively correlated with all four miRNAs (rS = 0.17 to 0.46). In multivariate regression models adjusting for confounders, expressions of lncRNAs MALAT1 and NORAD and all miRNAs were still significantly lower in the exposed group compared with controls, and the expression decreased with increasing RBC-Cr concentrations. CONCLUSIONS Cr(VI) exposure was inversely and in a dose-response manner associated with the expression of circulating non-coding RNA, which suggests ncRNAs as potential biomarkers for Cr(VI)-induced toxicity. Correlations between miRNAs and lncRNAs suggest that they participate in the same lncRNA-miRNA-messenger RNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Zheshun Jiang
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Romane Person
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; INSERM UMR-S 1124 and UMR-S 1139, Université Paris Cité, Paris, France
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, Örebro, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Tondel
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; National Research Centre for the Working Environment, Copenhagen, Denmark; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Huang Y, Xiang P, Chen Y, Pan Q, Yuan K. Alantolactone facilitates ferroptosis in non-small cell lung cancer through promoting FTH1 ubiquitination and degradation. Chem Biol Drug Des 2024; 104:e14560. [PMID: 39175059 DOI: 10.1111/cbdd.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 08/24/2024]
Abstract
Alantolactone (ALT), a natural sesquiterpene lactone from Inula helenium L., demonstrates potent antitumor activity in various human cancers, notably non-small cell lung cancer (NSCLC). Despite its recognized efficacy, the precise mechanisms of action remain elusive. Our study aimed to elucidate ALT's impact on NSCLC. Our findings suggested that ALT triggered apoptosis both in vitro and in vivo, underscoring its anticancer potential. Interestingly, the ferroptosis inhibitor (Fer-1), rather than necrostatin-1 (Nec-1) or Z-VAD-FMK, rescued ALT-induced cell death, implicating ferroptosis as pivotal. Subsequent analyses revealed ferroptosis as the primary mechanism underlying ALT-induced NSCLC cell death, supported by markers including ROS accumulation, MDA elevation, GSH depletion, Fe2+ generation, and GPX4 reduction. Through DARTS/MS proteomics, we identified FTH1 as the target of ALT-induced ferroptosis. Immunoblotting confirmed ALT's inhibition of FTH1 protein expression and accelerated its degradation in NSCLC cells. Immunoprecipitation assays demonstrated increased FTH1 ubiquitination induced by ALT. Additionally, ALT induced ferroptosis and facilitated Fe2+ accumulation via FTH1 ubiquitination. Importantly, ALT displayed potent antitumor effects in a subcutaneous xenograft model in BALB/c-nu/nu nude mice by enhancing ferroptosis. In summary, ALT induced ferroptosis by promoting intracellular Fe2+ accumulation through accelerated FTH1 degradation, highlighting its potential as an antitumor agent targeting ferroptosis.
Collapse
Affiliation(s)
- Yijiao Huang
- Department of Oncology, Wuxi No.2 Chinese Medicine Hospital, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Pei Xiang
- Department of Oncology, Wuxi No.2 Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Yuanyuan Chen
- Department of Oncology, Wuxi No.2 Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Qi Pan
- Department of Oncology, Wuxi No.2 Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Kemiao Yuan
- Department of Oncology, Wuxi No.2 Chinese Medicine Hospital, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
11
|
Zhao J, Zhang T, Wu P, Qiu J, Wu K, Shi L, Zhu Q, Zhou J. circRNA-0015004 act as a ceRNA to promote RCC2 expression in hepatocellular carcinoma. Sci Rep 2024; 14:16913. [PMID: 39043840 PMCID: PMC11266727 DOI: 10.1038/s41598-024-67819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Although circular RNAs (circRNA) have been demonstrated to modulate tumor initiation and progression, their roles in the proliferation of hepatocellular carcinoma (HCC) are still poorly understood. Based on the analysis of GEO data (GSE12174), hsa-circRNA-0015004 (circ-0015004) was screened and validated in 80 sets of HCC specimens. Subcellular fractionation analysis was designed to determine the cellular location of circ-0015004. Colony formation and cell counting kit-8 were performed to investigate the role of circ-0015004 in HCC. Dual-luciferase reporter gene assays, RNA immunoprecipitation and chromatin immunoprecipitation were employed to verify the interaction among circ-0015004, miR-330-3p and regulator of chromatin condensation 2 (RCC2). The expression level of circ-0015004 was significantly upregulated in HCC cell lines and HCC tissues. HCC patients with higher circ-0015004 levels displayed shorter overall survival, and higher tumor size and TNM stage. Moreover, knockdown of circ-0015004 significantly reduced HCC cell proliferation in vitro and inhibited the growth of HCC in nude mice. Mechanistic studies revealed that circ-0015004 could upregulate the expression of RCC2 by sponging miR-330-3p, thereby promoting HCC cell proliferation. Furthermore, we identified that Ying Yang 1 (YY1) could function as an important regulator of circ-0015004 transcription. This study systematically demonstrated the novel regulatory signaling of circ-0015004/miR-330-3p/RCC2 axis in promoting HCC progression, providing insight into HCC diagnosis and treatment from bench to clinic.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Mice
- Cell Line, Tumor
- Male
- Female
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Mice, Nude
- Middle Aged
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Up-Regulation
- RNA, Competitive Endogenous
- Chromosomal Proteins, Non-Histone
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Tong Zhang
- Department of Hepatobiliary Surgery, Xinghua People's Hospital Affiliated Yangzhou University, Xinghua, China
| | - Peng Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajing Qiu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Qiang Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun Zhou
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Huang Q, Chu Z, Wang Z, Li Q, Meng S, Lu Y, Ma K, Cui S, Hu W, Zhang W, Wei Q, Qu Y, Li H, Fu X, Zhang C. circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models. Nat Commun 2024; 15:3904. [PMID: 38724502 PMCID: PMC11082226 DOI: 10.1038/s41467-024-48284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.
Collapse
Affiliation(s)
- Qilin Huang
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiankun Li
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yanlin Qu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haihong Li
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518055, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
13
|
Tang YF, Liu ZH, Zhang LY, Shi SH, Xu S, Ma JA, Hu CH, Zou FW. circ_PPAPDC1A promotes Osimertinib resistance by sponging the miR-30a-3p/ IGF1R pathway in non-small cell lung cancer (NSCLC). Mol Cancer 2024; 23:91. [PMID: 38715012 PMCID: PMC11075361 DOI: 10.1186/s12943-024-01998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Drug Resistance, Neoplasm/genetics
- Acrylamides/pharmacology
- RNA, Circular/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Aniline Compounds/pharmacology
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation
- Animals
- Mice
- Signal Transduction
- Apoptosis
- Cell Movement/genetics
- Xenograft Model Antitumor Assays
- Male
- Female
- Indoles
- Pyrimidines
Collapse
Affiliation(s)
- Yi-Fang Tang
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Zheng-Hua Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 11000, Liaoning, P.R. China
| | - Lei-Yi Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Sheng-Hao Shi
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 11000, Liaoning, P.R. China
| | - Jin-An Ma
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Chun-Hong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Fang-Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China.
| |
Collapse
|
14
|
Patra S, Roy PK, Dey A, Mandal M. Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer 2024; 1879:189105. [PMID: 38701938 DOI: 10.1016/j.bbcan.2024.189105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Sucharita Patra
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
15
|
Zhao S, Xiao M, Li L, Zhang H, Shan M, Cui S, Zhang L, Zhang G, Wu S, Jin C, Yang J, Lu X. A unique circ_0067716/EIF4A3 double-negative feedback loop impacts malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171349. [PMID: 38438030 DOI: 10.1016/j.scitotenv.2024.171349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Liuli Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingming Shan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang 110005, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
16
|
Meng J, Song Z, Cong S, Sun Q, Ma Q, Shi W, Wang L. Regulatory role of the miR-142-3p/ CDC25C axis in modulating autophagy in non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:552-572. [PMID: 38601452 PMCID: PMC11002511 DOI: 10.21037/tlcr-24-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Background With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.
Collapse
Affiliation(s)
- Jing Meng
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zongchang Song
- Department of Oncology, Shanghai University Affiliated Mengchao Cancer Hospital, Shanghai, China
| | - Shuxian Cong
- Department of Thoracic Surgery, PKUCare Zibo Hospital, Zibo, China
| | - Qiong Sun
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Shi
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
17
|
Xu X, Zhu Z, Chen S, Fu Y, Zhang J, Guo Y, Xu Z, Xi Y, Wang X, Ye F, Chen H, Yang X. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticancer and antiinflammatory agents. Front Chem 2024; 12:1384301. [PMID: 38562527 PMCID: PMC10982501 DOI: 10.3389/fchem.2024.1384301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Cancer, a significant global health concern, necessitates innovative treatments. The pivotal role of chronic inflammation in cancer development underscores the urgency for novel therapeutic strategies. Benzothiazole derivatives exhibit promise due to their distinctive structures and broad spectrum of biological effects. This study aims to explore new anti-tumor small molecule drugs that simultaneously anti-inflammatory and anticancer based on the advantages of benzothiazole frameworks. Methods: The compounds were characterized by nuclear magnetic resonance (NMR), liquid chromatograph-mass spectrometer (LC-MS) and high performance liquid chromatography (HPLC) for structure as well as purity and other related physicochemical properties. The effects of the compounds on the proliferation of human epidermoid carcinoma cell line (A431) and human non-small cell lung cancer cell lines (A549, H1299) were evaluated by MTT method. The effect of compounds on the expression levels of inflammatory factors IL-6 and TNF-α in mouse monocyte macrophages (RAW264.7) was assessed using enzyme-linked immunosorbent assay (ELISA). The effect of compounds on apoptosis and cell cycle of A431 and A549 cells was evaluated by flow cytometry. The effect of compounds on A431 and A549 cell migration was evaluated by scratch wound healing assay. The effect of compounds on protein expression levels in A431 and A549 cells was assessed by Western Blot assay. The physicochemical parameters, pharmacokinetic properties, toxicity and drug similarity of the active compound were predicted using Swiss ADME and admetSAR web servers. Results: Twenty-five novel benzothiazole compounds were designed and synthesized, with their structures confirmed through spectrogram verification. The active compound 6-chloro-N-(4-nitrobenzyl) benzo[d] thiazol-2-amine (compound B7) was screened through a series of bioactivity assessments, which significantly inhibited the proliferation of A431, A549 and H1299 cancer cells, decreased the activity of IL-6 and TNF-α, and hindered cell migration. In addition, at concentrations of 1, 2, and 4 μM, B7 exhibited apoptosis-promoting and cell cycle-arresting effects similar to those of the lead compound 7-chloro-N-(2, 6-dichlorophenyl) benzo[d] thiazole-2-amine (compound 4i). Western blot analysis confirmed that B7 inhibited both AKT and ERK signaling pathways in A431 and A549 cells. The prediction results of ADMET indicated that B7 had good drug properties. Discussion: This study has innovatively developed a series of benzothiazole derivatives, with a focus on compound B7 due to its notable dual anticancer and anti-inflammatory activities. B7 stands out for its ability to significantly reduce cancer cell proliferation in A431, A549, and H1299 cell lines and lower the levels of inflammatory cytokines IL-6 and TNF-α. These results position B7B7 as a promising candidate for dual-action cancer therapy. The study's mechanistic exploration, highlighting B7's simultaneous inhibition of the AKT and ERK pathways, offers a novel strategy for addressing both the survival mechanisms of tumor cells and the inflammatory milieu facilitating cancer progression.
Collapse
Affiliation(s)
- Xuemei Xu
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Zhaojingtao Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyu Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanneng Fu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jinxia Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yangyang Guo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhouyang Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Xi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuebao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Pharmacy, The First People’s Hospital of Taizhou, Taizhou, China
| | - Xiaojiao Yang
- Scientific Research Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Xu Z, Zheng L, Li S. Paclitaxel-induced inhibition of NSCLC invasion and migration via RBFOX3-mediated circIGF1R biogenesis. Sci Rep 2024; 14:774. [PMID: 38191906 PMCID: PMC10774373 DOI: 10.1038/s41598-024-51500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
We previously reported that circIGF1R is significantly downregulated in non-small cell lung cancer (NSCLC) cells and tissues. It inhibits cancer cell invasion and migration, although the underlying molecular mechanisms remain elusive. The invasion and migration of NSCLC cells was analyzed by routine in vivo and in vitro functional assays. Fluorescent in situ hybridization, luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation (RIP) assay were performed to explore the molecular mechanisms. Mechanism of action of paclitaxel-induced RBFOX3-mediated inhibition of NSCLC invasion and migration was investigated through in vitro and in vivo experiments.Our study reveals that circIGF1R acts as a Competing Endogenous RNA (ceRNA) for miR-1270, thereby regulating Van-Gogh-like 2 (VANGL2) expression and subsequently inhibiting NSCLC cell invasion and migration via the Wnt pathway. We also found that RNA binding protein fox-1 homolog 3 (RBFOX3) enhances circIGF1R biogenesis by binding to IGF1R pre-mRNA, which in turn suppresses migration and invasion in NSCLC cells. Additionally, the chemotherapeutic drug paclitaxel was shown to impede NSCLC invasion and migration by inducing RBFOX3-mediated circIGF1R biogenesis.RBFOX3 inhibits the invasion and migration of NSCLC cells through the circIGF1R/ miR-1270/VANGL2 axis, circIGF1R has the potential to serve as a biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|