1
|
Bai J, Xia M, Xue Y, Ma F, Cui A, Sun Y, Han Y, Xu X, Zhang F, Hu Z, Liu Z, Liu Y, Cai G, Su W, Sun X, Wu H, Yan H, Chang X, Hu X, Bian H, Xia P, Gao J, Li Y, Gao X. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans. EBioMedicine 2020; 57:102849. [PMID: 32580141 PMCID: PMC7317187 DOI: 10.1016/j.ebiom.2020.102849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with altered production of secreted proteins. Increased understanding of secreted proteins could lead to improved prediction and treatment of NAFLD. Here, we aimed to discover novel secreted proteins in humans that are associated with hepatic fat content using unbiased proteomic profiling strategy, and how the identified Thbs1 modulates lipid metabolism and hepatic steatosis. METHOD NAFLD patients were enrolled and treated with lifestyle intervention. Patients who underwent liver biopsy were enrolled for analyzing the correlation between circulating Thbs1 and liver steatosis. Mice were fed on high-fat, high-sucrose diet and treated with recombinant Thbs1. Primary hepatocytes isolated from CD36 knockout (CD36-/-) mice and their wild-type littermates (controls) were treated with glucose plus insulin for 24 h together with or without recombinant Thbs1. FINDING Serum Thbs1 levels are increased in participants with NAFLD and positively associated with liver steatosis grades. Improvement of liver steatosis after lifestyle intervention was accompanied with significant reduction of serum Thbs1 levels. Pharmacological administration of recombinant human Thbs1 attenuates hepatic steatosis in diet-induced obese mice. Treatment with Thbs1 protein or stably overexpression of Thbs1 causes a significant reduction of lipid accumulation in primary hepatocytes or HepG2 cells exposed to high glucose plus insulin, suggesting that Thbs1 regulates lipid metabolism in a hepatocyte-autonomous manner. Mechanistically, Thbs1 inhibits cleavage and processing of SREBP-1, leading to a reduction of target lipogenic gene expression and hepatic steatosis. Inhibitory effects of Thbs1 on lipogenesis and triglyceride accumulation are abrogated in CD36 deficient primary hepatocytes exposed to high glucose plus insulin. Interestingly, beneficial effects of Thbs1 on lipid accumulation are observed in primary hepatocytes treated with a Thbs1 nonapeptide mimetic ABT-526. INTERPRETATION Thbs1 is a biomarker for NAFLD in humans, and pharmacological and genetic approaches for the modulation of Thbs1 activity may have the therapeutic potential for treating hepatic steatosis. FUND: A full list of funding bodies that contributed to this study can be found in the Funding Sources section.
Collapse
Affiliation(s)
- Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixuan Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China.
| |
Collapse
|
2
|
Barthem CS, Rossetti CL, Carvalho DP, da-Silva WS. Metformin ameliorates body mass gain and early metabolic changes in ovariectomized rats. Endocr Connect 2019; 8:1568-1578. [PMID: 31751310 PMCID: PMC6933833 DOI: 10.1530/ec-19-0470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Estradiol has been used to prevent metabolic diseases, bone loss and menopausal symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed for type 2 diabetes mellitus and lowers food intake and body mass while improving insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, insulin resistance and changes in the lipid profile. Thus, the aim of this work was to evaluate whether metformin could prevent the early metabolic dysfunction that occurs early after ovariectomy. Female Wistar rats were divided into the following groups: SHAM-operated (SHAM), ovariectomized (OVX), ovariectomized + estradiol (OVX + E2) and ovariectomized + metformin (OVX + M). Treatment with metformin diminished approximately 50% of the mass gain observed in ovariectomized animals and reduced both the serum and hepatic triglyceride levels. The hepatic levels of phosphorylated AMP-activated protein kinase (pAMPK) decreased after OVX, and the expression of the inactive form of hepatic acetyl-CoA carboxylase (ACC) was also reduced. Metformin was able to increase the levels of pAMPK in the liver of OVX animals, sustaining the balance between the inactive and total forms of ACC. Estradiol effects were similar to those of metformin but with different proportions. Our results suggest that metformin ameliorates the early alterations of metabolic parameters and rescues hepatic AMPK phosphorylation and ACC inactivation observed in ovariectomized rats.
Collapse
Affiliation(s)
- Clarissa Souza Barthem
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Lüdke Rossetti
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Correspondence should be addressed to D P Carvalho or W S da-Silva: or
| | - Wagner Seixas da-Silva
- Laboratório de Adaptações Metabólicas, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Correspondence should be addressed to D P Carvalho or W S da-Silva: or
| |
Collapse
|
3
|
Farahnak Z, Magri Tomaz L, Bergeron R, Chapados N, Lavoie JM. The effect of exercise training on upregulation of molecular markers of bile acid metabolism in the liver of ovariectomized rats fed a cholesterol-rich diet. ARYA ATHEROSCLEROSIS 2017; 13:184-192. [PMID: 29147129 PMCID: PMC5677322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Small heterodimer partner (SHP) is an important transcriptional factor involved in the regulation of glucose, lipid, and bile acid metabolism in the liver. SHP has been reported to be down-regulated in ovariectomized (Ovx) mice and up-regulated by estrogens suggesting a link between estrogens and SHP. The aim of the present study was to determine the effects of exercise training on SHP and key molecular markers of cholesterol and bile acid homeostasis in Ovx rats under cholesterol feeding. METHODS Our main experimental group was composed of Ovx rats fed a high-cholesterol diet (Ovx-Chol) that was compared to a group of Ovx rats fed a standard diet (Ovx-SD) and a group of sham operated rats fed the cholesterol diet (Sham-Chol). These three groups of Ovx and sham rats were subdivided into either voluntary wheel running (Tr) or sedentary (Sed) groups for 5 weeks. The mRNA expression of all genes was measured by quantitative real-time polymerase chain reaction. RESULTS Liver total cholesterol levels were not affected by exercise training in any of the experimental conditions. Cholesterol feeding in both sham and Ovx rats resulted in significantly higher hepatic cholesterol accumulation than in Ovx-SD (P < 0.001). Hepatic low density lipoprotein receptor (LDL-R) involved in cholesterol uptake from circulation was not influenced by training. A main effect of training was, however, found for transcripts of SHP and cholesterol 7 alpha-hydroxylase (CYP7A1, P < 0.050). CYP7A1 is the main gene involved in bile acid biosynthesis from cholesterol. CONCLUSION These results suggest that voluntary wheel running modulates cholesterol metabolism in Ovx animals through up-regulation of SHP and bile acid formation.
Collapse
Affiliation(s)
- Zahra Farahnak
- Department of Kinesiologie, University of Montreal, Montreal, Canada
| | - Luciane Magri Tomaz
- Laboratory of Exercise Physiology, Department of Physiological Sciences, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Raynald Bergeron
- Associate Professor, Department of Kinesiologie, University of Montreal, Montreal, Canada
| | - Natalie Chapados
- Assistant Professor, Institute of Research of Hospital Montfort, Institute of Savoir of Montfort AND School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Jean-Marc Lavoie
- Professor, Department of Kinesiologie, University of Montreal, Montreal, Canada
| |
Collapse
|
6
|
Yang J, Zhang X, Liu Z, Yuan Z, Song Y, Shao S, Zhou X, Yan H, Guan Q, Gao L, Zhang H, Zhao J. High-Cholesterol Diet Disrupts the Levels of Hormones Derived from Anterior Pituitary Basophilic Cells. J Neuroendocrinol 2016; 28:12369. [PMID: 27020952 DOI: 10.1111/jne.12369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Emerging evidence shows that elevated cholesterol levels are detrimental to health. However, it is unclear whether there is an association between cholesterol and the pituitary. We investigated the effects of a high-cholesterol diet on pituitary hormones using in vivo animal studies and an epidemiological study. In the animal experiments, rats were fed a high-cholesterol or control diet for 28 weeks. In rats fed the high-cholesterol diet, serum levels of thyroid-stimulating hormone (TSH; also known as thyrotrophin), luteinising hormone (LH) and follicle-stimulating hormone (FSH) produced by the basophilic cells of the anterior pituitary were elevated in a time-dependent manner. Among these hormones, TSH was the first to undergo a significant change, whereas adrenocorticotrophic hormone (ACTH), another hormone produced by basophilic cells, was not changed significantly. As the duration of cholesterol feeding increased, cholesterol deposition increased gradually in the pituitary. Histologically, basophilic cells, and especially thyrotrophs and gonadotrophs, showed an obvious increase in cell area, as well as a potential increase in their proportion of total pituitary cells. Expression of the β-subunit of TSH, FSH and LH, which controls hormone specificity and activity, exhibited a corresponding increase. In the epidemiological study, we found a similar elevation of serum TSH, LH and FSH and a decrease in ACTH in patients with hypercholesterolaemia. Significant positive correlations existed between serum total cholesterol and TSH, FSH or LH, even after adjusting for confounding factors. Taken together, the results of the present study suggest that the high-cholesterol diet affected the levels of hormones derived from anterior pituitary basophilic cells. This phenomenon might contribute to the pituitary functional disturbances described in hypercholesterolaemia.
Collapse
Affiliation(s)
- J Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - X Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - Z Liu
- Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Z Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Y Song
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - S Shao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - X Zhou
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - H Yan
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - Q Guan
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - L Gao
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - H Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| | - J Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, China
| |
Collapse
|