1
|
Khalaf HS, Naglah AM, Al-Omar MA, Moustafa GO, Awad HM, Bakheit AH. Synthesis, Docking, Computational Studies, and Antimicrobial Evaluations of New Dipeptide Derivatives Based on Nicotinoylglycylglycine Hydrazide. Molecules 2020; 25:molecules25163589. [PMID: 32784576 PMCID: PMC7464391 DOI: 10.3390/molecules25163589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Within a series of dipeptide derivatives (5–11), compound 4 was refluxed with d-glucose, d-xylose, acetylacetone, diethylmalonate, carbon disulfide, ethyl cyanoacetate, and ethyl acetoacetate which yielded 5–11, respectively. The candidates 5–11 were characterized and their biological activities were evaluated where they showed different anti-microbial inhibitory activities based on the type of pathogenic microorganisms. Moreover, to understand modes of binding, molecular docking was used of Nicotinoylglycine derivatives with the active site of the penicillin-binding protein 3 (PBP3) and sterol 14-alpha demethylase’s (CYP51), and the results, which were achieved via covalent and non-covalent docking, were harmonized with the biological activity results. Therefore, it was extrapolated that compounds 4, 7, 8, 9, and 10 had good potential to inhibit sterol 14-alpha demethylase and penicillin-binding protein 3; consequently, these compounds are possibly suitable for the development of a novel antibacterial and antifungal therapeutic drug. In addition, in silico properties of absorption, distribution, metabolism, and excretion (ADME) indicated drug likeness with low to very low oral absorption in most compounds, and undefined blood–brain barrier permeability in all compounds. Furthermore, toxicity (TOPKAT) prediction showed probability values for all carcinogenicity models were medium to pretty low for all compounds.
Collapse
Affiliation(s)
- Hemat S. Khalaf
- Chemistry Department, College of Science and Arts, Jouf University, Al Qurayyat 77425, Saudi Arabia;
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Correspondence: ; Tel.: +966-562003668
| | - Mohamed A. Al-Omar
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gaber O. Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Nahda University, New Beni-Suef City, Beni-Suef 62521, Egypt
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 12702, Sudan
| |
Collapse
|
2
|
Dubey SK, Alexander A, Pradhyut KS, Agrawal M, Jain R, Saha RN, Singhvi G, Saraf S, Saraf S. Recent Avenues in Novel Patient-Friendly Techniques for the Treatment of Diabetes. Curr Drug Deliv 2020; 17:3-14. [DOI: 10.2174/1567201816666191106102020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/14/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Background:
Diabetes is one of the most common chronic metabolic disorders which affect
the quality of human life worldwide. As per the WHO report, between 1980 to 2014, the number of
diabetes patients increases from 108 million to 422 million, with a global prevalence rate of 8.5% per
year. Diabetes is the prime reason behind various other diseases like kidney failure, stroke, heart disorders,
glaucoma, etc. It is recognized as the seventh leading cause of death throughout the world. The
available therapies are painful (insulin injections) and inconvenient due to higher dosing frequency.
Thus, to find out a promising and convenient treatment, extensive investigations are carried out globally
by combining novel carrier system (like microparticle, microneedle, nanocarrier, microbeads etc.) and
delivery devices (insulin pump, stimuli-responsive device, inhalation system, bioadhesive patch, insulin
pen etc.) for more precise diagnosis and painless or less invasive treatment of disease.
Objective:
The review article is made with an objective to compile information about various upcoming
and existing modern technologies developed to provide greater patient compliance and reduce the undesirable
side effect of the drug. These devices evade the necessity of daily insulin injection and offer a
rapid onset of action, which sustained for a prolonged duration of time to achieve a better therapeutic
effect.
Conclusion:
Despite numerous advantages, various commercialized approaches, like Afrezza (inhalation
insulin) have been a failure in recent years. Such results call for more potential work to develop a
promising system. The novel approaches range from the delivery of non-insulin blood glucose lowering
agents to insulin-based therapy with minimal invasion are highly desirable.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| | - K. Sai Pradhyut
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| | - Rupesh Jain
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayana Saha
- Department of Biotechnology, Faculty of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Faculty of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
3
|
Shomali T, Taherianfard M, Dalvand M, Namazi F. Effect of pharmacological doses of niacin on testicular structure and function in normal and diabetic rats. Andrologia 2018; 50:e13142. [PMID: 30191583 DOI: 10.1111/and.13142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
Male diabetic patients may experience adverse changes in testicular functions or structure. Niacin has antidyslipidemic properties in diabetic patients. We aimed to clarify the effect of pharmacological doses of niacin on testicular structure and function of normal and diabetic rats. Sixty adult male rats were treated as follows. Healthy control (HC); diabetic control (DC); NL and NH groups: normal rats that received niacin at 800 and 4,000 mg/kg of diet; DL and DH groups: diabetic rats that received niacin at 800 and 4,000 mg/kg diet for 50 days. In normal rats, obvious increase in serum testosterone especially in NL group associated with improved antioxidant status of testicular tissue was observed. In diabetic rats, niacin resulted in higher testicular weight/body weight and improved some histological parameters without affecting blood glucose, testosterone and sperm count. Testicular MDA content decreased. In conclusion, niacin especially at 800 mg/kg diet improves serum testosterone levels and antioxidant status of testes in normal rats. In diabetic rats, despite positive changes in histological features and antioxidant status of testes reproductive outcome including sperm count or testosterone levels were not improved. This study set the scene for further investigations on the effect of niacin on male reproductive system.
Collapse
Affiliation(s)
- Tahoora Shomali
- Division of Pharmacology and Toxicology, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahnaz Taherianfard
- Division of Physiology, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Dalvand
- Division of Physiology, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|